Khi tất cả các kết quả của một trò chơi hay phép thử ngẫu nghiệm đều có khả năng xảy ra bằng nhau thì xác. Hướng dẫn giải Giải bài 7 trang 95 SGK Toán 8 tập 2- Chân trời sáng tạo – Bài tập cuối chương 9. Một túi đựng 1 viên bi xanh, 1 viên bi đỏ,…
Đề bài/câu hỏi:
Một túi đựng 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi trắng và 1 viên bi vàng có cùng kích thước và khối lượng. Lấy ngẫu nhiên 2 viên bi từ túi. Tính xác suất của các biến cố:
\(A\): “Trong hai viên bi lấy ra có 1 viên bi màu đỏ”;
\(B\): “Hai viên bi lấy ra đều không có màu trắng”.
Hướng dẫn:
Khi tất cả các kết quả của một trò chơi hay phép thử ngẫu nghiệm đều có khả năng xảy ra bằng nhau thì xác suất xảy ra biến cố \(A\) là tỉ số giữ số kết quả thuận lời cho \(A\) và tổng số kết quả có thể xảy ra của phép thử, tức là:
\(P\left( A \right) = \)Số kết quả thuận lợi : Số kết quả có thể xảy ra.
Lời giải:
a) Cách lấy 2 viên bi trong túi là:
Xanh – đỏ; Xanh – trắng; Xanh – vàng; Đỏ – trắng; Đỏ – vàng; Trắng – vàng.
Có 6 cách lấy hai biên bi từ trong túi.
Biến cố \(A\) xảy ra khi 2 viên bi lấy ra có 1 viên bi màu đỏ
Có 3 kết quả thuận lợi cho biến cố \(A\) là Xanh – đỏ; Đỏ – trắng; Đỏ – vàng
Xác suất 2 viên bi lấy ra có 1 viên bi màu đỏ là \(\frac{3}{6} = \frac{1}{2}\).
Vậy xác suất 2 viên bi lấy ra có 1 viên bi màu đỏ là \(\frac{1}{2}\).
b) Biến cố \(B\) xảy ra khi 2 viên bi lấy ra đều không có màu trắng
Có 3 kết quả thuận lợi cho \(B\) là : Xanh – đỏ; Xanh – vàng; Đỏ – vàng.
Xác suất 2 viên bi lấy ra không có viên bi nào màu trắng là \(\frac{3}{6} = \frac{1}{2}\).
Vậy xác suất 2 viên bi lấy ra không có viên bi nào màu trắng là \(\frac{1}{2}\).