Trang chủ Lớp 8 Toán lớp 8 SGK Toán 8 - Chân trời sáng tạo Bài 2 trang 71 Toán 8 – Chân trời sáng tạo: Cho...

Bài 2 trang 71 Toán 8 – Chân trời sáng tạo: Cho tứ giác ABCD có AB = AD, BD là tia phân giác của góc B. Chứng minh rằng ABCD là hình thang

Chứng minh \(AD\) // \(BC\). Vận dụng kiến thức giải Giải bài 2 trang 71 SGK Toán 8 – Chân trời sáng tạo – Bài 3. Hình thang – Hình thang cân. Cho tứ giác…

Đề bài/câu hỏi:

Cho tứ giác \(ABCD\) có \(AB = AD\), \(BD\) là tia phân giác của góc \(B\). Chứng minh rằng \(ABCD\) là hình thang.

Hướng dẫn:

Chứng minh \(AD\) // \(BC\)

Lời giải:

Xét \(\Delta ABD\) ta có: \(AD = AB\) (gt)

\( \Rightarrow \Delta ADB\) cân tại \(A\)

\( \Rightarrow \widehat {ADB} = \widehat {ABD}\)

Mà \(\widehat {ABD} = \widehat {CBD}\) (do \(BD\) là phân giác của góc \(B\))

\( \Rightarrow \widehat {ADB} = \widehat {CBD}\)

Mà hai góc ở vị trí so le trong

\( \Rightarrow AD\;{\rm{//}}\;BC\)

Suy ra \(ABCD\) là hình thang