Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tìm các góc bằng nhau, các cặp cạnh tỉ lệ. Lời giải Giải bài 9.2 trang 51 sách bài tập toán 8 – Kết nối tri thức với cuộc sống – Bài 33. Hai tam giác đồng dạng. Cho $\Delta ABC\backsim \Delta DEF$. Những cách viết nào dưới đây đúng?…
Đề bài/câu hỏi:
Cho $\Delta ABC\backsim \Delta DEF$. Những cách viết nào dưới đây đúng?
(1) $\Delta BCA\backsim \Delta FED$
(2) $\Delta CAB\backsim \Delta EDF$
(3) $\Delta BAC\backsim \Delta EDF$
(4) $\Delta CBA\backsim \Delta FED$
Hướng dẫn:
Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tìm các góc bằng nhau, các cặp cạnh tỉ lệ:
+ Tam giác A’B’C’ được gọi là đồng dạng với tam giác ABC nếu các cạnh tương ứng tỉ lệ và các góc tương ứng bằng nhau, tức là \(\frac{{A’B’}}{{AB}} = \frac{{B’C’}}{{BC}} = \frac{{A’C’}}{{AC}};\widehat {A’} = \widehat A,\widehat {B’} = \widehat B,\widehat {C’} = \widehat C\),
+ Tam giác A’B’C’ đồng dạng với tam giác ABC được kí hiệu là: $\Delta A’B’C’\backsim \Delta ABC$ (viết theo thứ tự cặp đỉnh tương ứng). Ở đây hai đỉnh A và A’ (B và B’, C và C’) là hai đỉnh tương ứng, các cạnh tương ứng \(\frac{{A’B’}}{{AB}} = \frac{{B’C’}}{{BC}} = \frac{{A’C’}}{{AC}} = k\) được gọi là tỉ số đồng dạng.
Lời giải:
Vì $\Delta ABC\backsim \Delta DEF$ nên \(\widehat A = \widehat D,\widehat B = \widehat E,\widehat C = \widehat F;\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF\;}}\)
Do đó, đáp án (3), (4) đúng vì \(\widehat A = \widehat D,\widehat B = \widehat E,\widehat C = \widehat F;\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF\;}}\)