Trang chủ Lớp 8 Toán lớp 8 SBT Toán 8 - Cánh diều Bài 28 trang 100 SBT toán 8 – Cánh diều: Cho tam...

Bài 28 trang 100 SBT toán 8 – Cánh diều: Cho tam giác ABC nhọn có các đường cao BD, CE. Tia phân giác của các góc ACE, ABD cắt nhau tại O và cắt AB, AC lần lượt tại M, N. Tia BN

Dựa vào dấu hiệu nhận biết của hình bình hành và hình thoi để xác định. Hướng dẫn giải Giải bài 28 trang 100 sách bài tập toán 8 – Cánh diều – Bài 6. Hình thoi. Cho tam giác \(ABC\) nhọn có các đường cao \(BD,CE\). Tia phân giác của các góc \(ACE,ABD\…

Đề bài/câu hỏi:

Cho tam giác \(ABC\) nhọn có các đường cao \(BD,CE\). Tia phân giác của các góc \(ACE,ABD\) cắt nhau tại \(O\) và cắt \(AB,AC\) lần lượt tại \(M,N\). Tia \(BN\) cắt \(CE\) tại \(K\), tia \(CM\) cắt \(BD\) tại \(H\). Chứng minh:

a) \(BN \bot CM\)

b) Tứ giác \(MNHK\) là hình thoi.

Hướng dẫn:

Dựa vào dấu hiệu nhận biết của hình bình hành và hình thoi để xác định.

Hình bình hành có hai cạnh kề bằng nhau là hình thoi

Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

Lời giải:

a) Do tam giác \(ABD\) vuông tại \(D\) và tam giác \(ACE\) vuông tại \(E\) nên \(\widehat {ABD} + \widehat A = \widehat {ACE} + \widehat A = 90^\circ \). Suy ra \(\widehat {ABD} = \widehat {ACE}\).

Mà \(BN\) và \(CM\) lần lượt là tia phân giác của \(\widehat {ABD}\) và \(\widehat {ACE}\), suy ra \(\widehat {ABN} = \widehat {DBN} = \widehat {ACM} = \widehat {ECM}\).

Do tam giác \(CEM\) vuông tại \(E\) nên \(\widehat {ECM} + \widehat {EMC} = 90^\circ \)

Suy ra \(\widehat {ABN} + \widehat {EMC} = 90^\circ \) hay \(\widehat {MBO} + \widehat {BMO} = 90^\circ \).

Do đó ta tính được \(\widehat {BOM} = 90^\circ \). Vậy \(BN \bot CM\).

b) \(\Delta BMO = \Delta BHO\) (cạnh góc vuông – góc nhọn kề). Suy ra \(OM = OH\)

\(\Delta CNO = \Delta CKO\) (cạnh góc vuông – góc nhọn kề). Suy ra \(ON = OK\).

Tứ giác \(MNHK\) có hai đường chéo \(MH\) và \(NK\) cắt nhau tại trung điểm \(O\) của mỗi đường nên \(MNHK\) là hình bình hành.

Hình bình hành \(MNHK\) có \(MH \bot NK\) nên \(MNHK\) là hình thoi.