Trang chủ Lớp 8 Toán lớp 8 SBT Toán 8 - Cánh diều Bài 23 trang 67 SBT toán 8 – Cánh diều: Cho hình...

Bài 23 trang 67 SBT toán 8 – Cánh diều: Cho hình bình hành ABCD. Đường phân giác của góc A cắt BD tại E, đường phân giác của góc B cắt AC tại F. Chứng minh

Áp dụng tính chất đường phân giác của tam giác: trong tam giác. Trả lời Giải bài 23 trang 67 sách bài tập toán 8 – Cánh diều – Bài 4. Tính chất đường phân giác của tam giác. Cho hình bình hành \(ABCD\). Đường phân giác của góc \(A\) cắt \(BD\) tại \(E\),…

Đề bài/câu hỏi:

Cho hình bình hành \(ABCD\). Đường phân giác của góc \(A\) cắt \(BD\) tại \(E\), đường phân giác của góc \(B\) cắt \(AC\) tại \(F\). Chứng minh:

a) \(\frac{{BE}}{{ED}} = \frac{{AF}}{{FC}}\);

b) \(EF//AB\)

Hướng dẫn:

Áp dụng tính chất đường phân giác của tam giác: trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy.

Lời giải:

a) Tam giác \(ABD\) có \(AE\) là đường phân giác của góc \(A\) nên \(\frac{{BE}}{{ED}} = \frac{{AB}}{{AD}}\) (1).

Tam giác \(ABC\) có \(BF\) là đường phân giác của góc \(B\) nên \(\frac{{AF}}{{FC}} = \frac{{AB}}{{BC}}\) (2)

Vì \(AD = BC\) nên từ (1) và (2) suy ra \(\frac{{BE}}{{ED}} = \frac{{AF}}{{FC}}\).

b) Ta có: \(\frac{{BE}}{{ED}} = \frac{{AF}}{{FC}}\) suy ra \(\frac{{BE + ED}}{{ED}} = \frac{{AF + FC}}{{FC}}\) hay \(\frac{{BD}}{{ED}} = \frac{{AC}}{{FC}}\) hay \(\frac{{2OD}}{{ED}} = \frac{{2OC}}{{FC}}\), suy ra \(\frac{{OD}}{{ED}} = \frac{{OC}}{{FC}}\). Do đó \(EF//CD\) hay \(EF//AB\).