Chứng minh hai tam giác bằng nhau bằng cách chỉ ra 3 cặp cạnh bằng nhau (c. c. c). Trả lời Giải bài 4.6 trang 67 SGK Toán 7 tập 1 – Kết nối tri thức – Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác. Cho Hình 4.20, biết AB = CB,AD = CD,…
Đề bài/câu hỏi:
Cho Hình 4.20, biết \(AB = CB, AD = CD,\widehat{DAB} = {90^\circ },\widehat{BDC} = {30^\circ }\)
a) Chứng minh rằng \(\Delta ABD = \Delta CBD\).
b) Tính \(\widehat {ABC}\).
Hướng dẫn:
a) Chứng minh hai tam giác bằng nhau bằng cách chỉ ra 3 cặp cạnh bằng nhau (c.c.c).
b) \(\widehat {ABC} = \widehat {ABD} + \widehat {CBD}\)
Lời giải:
a) Xét \(\Delta ABD\) và \(\Delta CBD\)có:
DA=DC(gt)
BD chung
BA=BC
Vậy \(\Delta ABD = \Delta CBD\)(c.c.c)
b) Ta có \(\widehat A = \widehat C = {90^o}\)(hai góc tương ứng)
Theo định lí tổng ba góc trong tam giác BCD, ta có:
\(\begin{array}{l}\widehat C + \widehat {CDB} + \widehat {DBC} = {180^o}\\ \Rightarrow {90^o} + {30^o} + \widehat {DBC} = {180^o}\\ \Rightarrow \widehat {DBC} = {60^o}\end{array}\)
Mà \(\Delta ABD = \Delta CBD\) nên \(\widehat {ABD} = \widehat {CBD}\) ( 2 góc tương ứng)
\(\Rightarrow \widehat {ABD} = \widehat {CBD} = {60^o}\\\Rightarrow \widehat {ABC} = \widehat {ABD} + \widehat {CBD} = {60^o} + {60^o} = {120^o}\)