Khi Om là tia phân giác của góc xOy thì \(\widehat {xOm} = \widehat {mOy} = \frac{1}{2}. \widehat {xOy}\. Hướng dẫn trả lời Giải bài 3.26 trang 57 SGK Toán 7 tập 1 – Kết nối tri thức – Bài 11. Định lí và chứng minh định lí. Cho góc xOy không phải là góc bẹt. Khẳng định nào sau đây là đúng?…
Đề bài/câu hỏi:
Cho góc xOy không phải là góc bẹt. Khẳng định nào sau đây là đúng?
(1) Nếu Ot là tia phân giác của góc xOy thì \(\widehat {xOt} = \widehat {tOy}\).
(2) Nếu tia Ot thỏa mãn \(\widehat {xOt} = \widehat {tOy}\) thì Ot là tia phân giác của góc xOy.
Nếu có khẳng định không đúng, hãy nêu ví dụ cho thấy khẳng định đó không đúng.
(Gợi ý: Xét tia đối của một tia phân giác)
Hướng dẫn:
Khi Om là tia phân giác của góc xOy thì \(\widehat {xOm} = \widehat {mOy} = \frac{1}{2}.\widehat {xOy}\)
Lời giải:
(1) đúng vì Ot là tia phân giác của góc xOy thì \(\widehat {xOt} = \widehat {tOy} = \frac{1}{2}.\widehat {xOy}\)
(2) sai vì
Gọi Ot’ là tia phân giác của góc xOy, ta có: \(\widehat {xOt’} = \widehat {t’Oy}\)
Xét tia Ot là tia đối của tia Ot’ thì \(\widehat {xOt’}+ \widehat {xOt}= 180^0; \widehat {t’Oy}+\widehat {tOy}=180^0\) (kề bù)
Ta có: \(\widehat {xOt} = \widehat {tOy}\) nhưng Ot không là tia phân giác của góc xOy.
Chú ý:
Mỗi góc khác góc bẹt chỉ có một tia phân giác.