Trang chủ Lớp 7 Toán lớp 7 SGK Toán 7 - Chân trời sáng tạo Giải Bài 6 trang 84 Toán 7 tập 2 – Chân trời...

Giải Bài 6 trang 84 Toán 7 tập 2 – Chân trời sáng tạo: Cho tam giác nhọn MNP. Các trung tuyến ME và NF cắt nhau tại G. Trên tia đối của tia FN lấy điểm D sao cho FN = FD

Chứng minh \(\Delta \)MFN = \(\Delta \)PFD theo trường họp cạnh góc cạnh Sử dụng tính chất của điểm đối xứng qua một điểm. Trả lời Giải Bài 6 trang 84 SGK Toán 7 tập 2 – Chân trời sáng tạo – Bài tập cuối chương 8. Cho tam giác nhọn MNP. Các trung tuyến ME và NF cắt nhau tại G….

Đề bài/câu hỏi:

Cho tam giác nhọn MNP. Các trung tuyến ME và NF cắt nhau tại G. Trên tia đối của tia FN lấy điểm D sao cho FN = FD.

a) Chứng minh rằng \(\Delta \)MFN = \(\Delta \)PFD

b) Trên đoạn thẳng FD lấy điểm H sao cho F là trung điểm của GH. Gọi K là trung điểm của GK. Chứng minh rằng ba điểm M, H, K thẳng hàng.

Hướng dẫn:

a) Chứng minh \(\Delta \)MFN = \(\Delta \)PFD theo trường họp cạnh góc cạnh

Sử dụng tính chất của điểm đối xứng qua một điểm, trung điểm của 1 đoạn thẳng và 2 góc đối đỉnh

b) Chứng minh H là trọng tâm của tam giác MPD sau đó dựa vào tính chất ta suy ra M, H, K thẳng hàng

Lời giải:

a) Vì N đối xứng với D qua F (theo giả thiết)

Nên NF = DF (1)

Vì F là trung điểm của MP (theo giả thiết)

Nên MF = PF (2)

Vì góc NFM và góc PFD ở vị trí đối đỉnh nên 2 góc bằng nhau (3)

Từ (1), (2) và (3) \( \Rightarrow \)\(\Delta \)MFN = \(\Delta \)PFD (c-g-c)

b) Xét tam giác MPD có :

F là trung điểm MD,

K là trung điểm DP (theo giả thiết)

Mà 2 đường trung tuyến của tam giác MPD là DF và MK cắt nhau tại H

\( \Rightarrow \) H là trọng tâm \(\Delta \)MPD

\( \Rightarrow \) M, H, K thẳng hàng