Trang chủ Lớp 7 Toán lớp 7 Sách bài tập Toán 7 - Kết nối tri thức Giải Bài 7.19 trang 28 SBT toán 7 – Kết nối tri...

Giải Bài 7.19 trang 28 SBT toán 7 – Kết nối tri thức: Gọi S(x) là tổng của hai đa thức A(x) và B(x). Biết rằng x = a là một nghiệm của đa thức A(x). Chứng minh rằng

+) \(S\left( x \right) = A\left( x \right) + B\left( x \right)\) +) Biến đổi chứng minh \(S\left( a \right) = B\left( a \right)\. Phân tích, đưa ra lời giải Giải Bài 7.19 trang 28 sách bài tập toán 7 – Kết nối tri thức với cuộc sống – Bài 26. Phép cộng và phép trừ đa thức một biến. Gọi S(x) là tổng của hai đa thức A(x) và B(x)….

Đề bài/câu hỏi:

Gọi S(x) là tổng của hai đa thức A(x) và B(x). Biết rằng x = a là một nghiệm của đa thức A(x). Chứng minh rằng:

a) Nếu x = a là một nghiệm của B(x) thì a cũng là một nghiệm của S(x).

b) Nếu a không là nghiệm của B(x) thì a cũng không là nghiệm của S(x).

Hướng dẫn:

+) \(S\left( x \right) = A\left( x \right) + B\left( x \right)\)

+) Biến đổi chứng minh \(S\left( a \right) = B\left( a \right)\) (Thay x = a vào biểu thức trên).

Lời giải:

S(x) là tổng của hai đa thức A(x) và B(x) nên \(S\left( x \right) = A\left( x \right) + B\left( x \right)\) (1)

x = a là một nghiệm của đa thức A(x) nên \(A\left( a \right) = 0\)

Thay x = a vào (1) ta được:

\(\begin{array}{l}S\left( a \right) = A\left( a \right) + B\left( a \right)\\ \Rightarrow S\left( a \right) = 0 + B\left( a \right)\\ \Rightarrow S\left( a \right) = B\left( a \right)\end{array}\)

a)

Nếu a là nghiệm của B(x) thì B(a) = 0

\( \Rightarrow S\left( a \right) = B\left( a \right) = 0\)

Vậy a cũng là nghiệm của S(x).

b)

Nếu a không là nghiệm của B(x) thì B(a) # 0

\( \Rightarrow S\left( a \right) = B\left( a \right) \ne 0\)

Vậy a cũng không là nghiệm của S(x).