Trang chủ Lớp 7 Toán lớp 7 Sách bài tập Toán 7 - Chân trời sáng tạo Giải Bài 9 trang 30 SBT toán 7 – Chân trời sáng...

Giải Bài 9 trang 30 SBT toán 7 – Chân trời sáng tạo: Số lượng xe du lịch được bán ra tại một nước từ năm 1983 tới năm 1996 được mô tả theo công thức C = – 0, 016t^4 + 0

Thực hiện phép cộng đa thức một biến Bước 1. Trả lời Giải Bài 9 trang 30 sách bài tập toán 7 – Chân trời sáng tạo – Bài 3. Phép cộng và phép trừ đa thức một biến. Số lượng xe du lịch được bán ra tại một nước từ năm 1983 tới năm 1996 được mô tả…

Đề bài/câu hỏi:

Số lượng xe du lịch được bán ra tại một nước từ năm 1983 tới năm 1996 được mô tả theo công thức \(C = – 0,016{t^4} + 0,49{t^3} – 4,8{t^2} + 14t + 70\) (tính bằng đơn vị nghìn chiếc), trong khi đó số xe tải thì tính theo \(T = – 0,01{t^4} + 0,31{t^3} – 3{t^2} + 11t + 23\), với t là số năm tính từ 1983. Viết biểu thức biểu thị số xe (cả xe du lịch và xe tải) được bán ra trong khoảng thời gian nêu trên. Tính số xe được bán ra vào năm 1990 (ứng với \(t = 7\)).

Hướng dẫn:

Thực hiện phép cộng đa thức một biến

Bước 1: Sắp xếp các đơn thức của hai đa thức cùng theo thứ tự lũy thừa giảm dần (hoặc tăng dần) của biến.

Bước 2: Thực hiện phép tính theo hàng ngang hoặc cột dọc.

Lời giải:

Biểu thức biểu thị số xe (cả xe du lịch và xe tải) được bán ra từ năm 1983 đến năm 1996 là

\(\begin{array}{l}C + T = – 0,016{t^4} + 0,49{t^3} – 4,8{t^2} + 14t + 70 + \left( { – 0,01{t^4} + 0,31{t^3} – 3{t^2} + 11t + 23} \right)\\ = \left( { – 0,016 – 0,01} \right){t^4} + \left( {0,49 + 0,31} \right){t^3} + \left( { – 4,8 – 3} \right){t^2} + \left( {14 + 11} \right)t + 70 + 23\\ = – 0,026{t^4} + 0,8{t^3} – 7,8{t^2} + 25t + 93\end{array}\)

Vậy \(C + T = – 0,026{t^4} + 0,8{t^3} – 7,8{t^2} + 25t + 93\)

Số xe được bán ra vào năm 1990 (ứng với \(t = 7\)) là

\(C + T = – 0,{026.7^4} + 0,{8.7^3} – 7,{8.7^2} + 25.7 + 93 = 97,774\) Vậy số xe được bán ra vào năm 1990 là 97774 chiếc.