Trang chủ Lớp 7 Toán lớp 7 Đề thi đề kiểm tra Toán lớp 7 - Kết nối tri thức Đề thi học kì 1 – Đề số 2 Đề thi...

[Lời giải] Đề thi học kì 1 – Đề số 2 Đề thi đề kiểm tra Toán lớp 7: Phần I: Trắc nghiệm C C 3. D 4. D 5. B 6. D 7. C 8. C 9. A 10

Lời giải Lời giải Đề thi học kì 1 – Đề số 2 – Đề thi đề kiểm tra Toán lớp 7 Kết nối tri thức.

Câu hỏi/Đề bài:

Phần I: Trắc nghiệm

1.C

2.C

3.D

4.D

5.B

6.D

7.C

8.C

9.A

10.A

Câu 1

Hướng dẫn:

Quy đồng các phân số cùng mẫu dương để so sánh.

Cách giải:

*Ta có: \(11 < 9\), do đó, \(\frac{5}{{11}} \frac{{ – 5}}{9}\)

*Ta có: \(\frac{7}{5} = \frac{{91}}{{65}}\,\,;\,\,\frac{3}{5} = \frac{{39}}{{65}}\,\,;\,\,\frac{{18}}{{13}} = \frac{{90}}{{65}}\)

Vì \(39 < 90 < 91\) nên \(\frac{{39}}{{65}} < \frac{{90}}{{65}} < \frac{{91}}{{65}}\) hay \(\frac{3}{5} < \frac{{18}}{{13}} < \frac{7}{5}\)

Thứ tự tăng dần của các số hữu tỉ là: \(\frac{{ – 5}}{{11}}\,\,;\,\,\frac{{ – 5}}{9}\,\,;\,\,\frac{3}{5}\,\,;\,\,\frac{{18}}{{13}}\,\,;\,\,\frac{7}{5}.\)

Chọn C.

Câu 2

Hướng dẫn:

Vận dụng công thức tính lũy thừa của một thường bằng thương các lũy thừa: \({\left( {\frac{x}{y}} \right)^n} = \frac{{{x^n}}}{{{y^n}}}\,\left( {y \ne 0} \right)\)

Cách giải:

\({\left( {\frac{3}{5}} \right)^{10}}:{5^{10}}\)\( = \frac{{{3^{10}}}}{{{5^{10}}}}{.5^{10}} = {3^{10}}\)

Chọn C.

Câu 3

Hướng dẫn:

Thực hiện tính căn bậc hai.

Cách giải:

\(\begin{array}{l}\,\,\,\,\sqrt {0,04} + \sqrt {0,25} + 2,31\\ = 0,2 + 0,5 + 2,31\\ = 0,7 + 2,31\\ = 3,01\end{array}\)

Chọn D.

Câu 4

Hướng dẫn:

Vận dụng kiến thức về dấu giá trị tuyệt đối của một số.

Cách giải:

+ Đáp án A sai, khi \(x < y\)

+ Đáp án B sai, lấy ví dụ khi \(x = 0;y \ne 0\)

+ Đáp án C sai, lấy ví dụ khi \(x = – y \ne 0\)

+ Đáp án D đúng, theo quy tắc cộng hai số trái dấu.

Chọn D.

Câu 5

Hướng dẫn:

Từ giả thiết của bài toán: \(\frac{1}{5}\angle xOz = \frac{1}{4}\angle yOz\), tìm được \(\angle yOz\) theo \(\angle xOz\)

Vì hai góc \(xOz\) và \(yOz\) là hai góc kề nhau nên \(\angle xOy = \angle xOz + \angle yOz\)

Từ đó tính được \(\angle xOz\)

Cách giải:

Ta có: \(\frac{1}{5}\angle xOz = \frac{1}{4}\angle yOz\) suy ra \(\angle yOz = \frac{4}{5}\angle xOz\)

Vì hai góc \(xOz\) và \(yOz\) là hai góc kề nhau nên \(\angle xOy = \angle xOz + \angle yOz = {90^0}\)

\(\begin{array}{l} \Rightarrow \angle xOz + \frac{4}{5}\angle xOz = {90^0}\\ \Rightarrow \left( {1 + \frac{4}{5}} \right).\angle xOz = {90^0}\\ \Rightarrow \frac{9}{5}.\angle xOz = {90^0}\\ \Rightarrow \angle xOz = {90^0}:\frac{9}{5} = {90^0}.\frac{5}{9}\\ \Rightarrow \angle xOz = {50^0}\end{array}\)

Vậy \(\angle xOz = {50^0}\)

Chọn B.

Câu 6

Hướng dẫn:

Vận dụng tính chất của tam giác cân: Tam giác cân có hai góc ở đáy bằng nhau.

Áp dụng định lý tổng ba góc trong tam giác: Tổng số đo ba góc trong một tam giác bằng \({180^0}\).

Cách giải:

Tam giác \(ABC\) có: \(AB = AC\) nên \(ABC\) là tam giác cân

Suy ra \(\angle B = \angle C = {55^0}\) (tính chất của tam giác cân)

Xét tam giác \(ABC\) có: \(\angle A + \angle B + \angle C = {180^0}\) (định lý tổng ba góc trong một tam giác)

\(\begin{array}{l} \Rightarrow \angle A + {55^0} + {55^0} = {180^0}\\ \Rightarrow x + {110^0} = {180^0}\\ \Rightarrow x = {180^0} – {110^0}\\ \Rightarrow x = {70^0}\end{array}\)

Vậy \(x = {70^0}\)

Chọn D.

Câu 7

Hướng dẫn:

Vận dụng định lý (trường hợp bằng nhau góc – cạnh – góc (g.c.g)): Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Cách giải:

Để \(\Delta ABC = \Delta MNP\left( {g.c.g} \right)\) thì cần thêm điều kiện \(BC = NP\).

Chọn C.

Câu 8

Hướng dẫn:

Vận dụng tính chất của hai đường thẳng song song: Hai đường thẳng song song thì hai góc ở vị trí so le trong bằng nhau.

Cách giải:

Ta có: \(a//b\) (giả thiết) nên \(\angle BAb = \angle ABH = {55^0}\) (hai góc so le trong)

Vậy \(\angle ABH = {55^0}\)

Chọn C.

Câu 9

Hướng dẫn:

Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng: Nếu … thì ….

Cách giải:

Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng: Nếu … thì ….

Chọn A.

Câu 10

Hướng dẫn:

Phân tích dữ liệu biểu đồ đoạn thẳng.

Cách giải:

Từ biểu đồ đoạn thẳng, ta thấy: Thời điểm nhiệt độ thấp nhất là 7 giờ; thời điểm nhiệt độ cao nhất là 13 giờ đến 16 giờ.

Chọn A.

Phần II. Tự luận:

Bài 1

Hướng dẫn:

a) Thực hiện phép cộng, trừ, nhân, chia với các số hữu tỉ.

b) Tính lũy thừa của một số hữu tỉ: \({\left( {\frac{a}{b}} \right)^n} = \frac{{{a^n}}}{{{b^n}}}\,\,\left( {b \ne 0;n \in \mathbb{Z}} \right)\)

Thực hiện phép cộng, trừ, nhân với các số hữu tỉ.

c) Tính căn bậc hai số học.

Thực hiện phép trừ, chia với các số hữu tỉ.

d) Tính căn bậc hai số học, tính lũy thừa của một số hữu tỉ: \({\left( {\frac{a}{b}} \right)^n} = \frac{{{a^n}}}{{{b^n}}}\,\,\left( {b \ne 0;n \in \mathbb{Z}} \right)\), tính giá trị tuyệt đối của một số.

Cách giải:

a) \(3,5.\frac{2}{{21}} – \frac{5}{9}:\frac{{25}}{3} + \frac{1}{{15}}\)

\(\begin{array}{l} = \frac{7}{2}.\frac{2}{{21}} – \frac{5}{9}.\frac{3}{{25}} + \frac{1}{{15}}\\ = \frac{1}{3} – \frac{1}{{15}} + \frac{1}{{15}}\\ = \frac{1}{3} + \left( { – \frac{1}{{15}} + \frac{1}{{15}}} \right)\\ = \frac{1}{3} + 0 = \frac{1}{3}\end{array}\)

b) \(16.{\left( {\frac{3}{{20}} – \frac{2}{5}} \right)^2} + \frac{3}{5}\)

\(\begin{array}{l} = 16.{\left( {\frac{3}{{20}} – \frac{8}{{20}}} \right)^2} + \frac{3}{5}\\ = 16.{\left( {\frac{{ – 5}}{{20}}} \right)^2} + \frac{3}{5}\\ = 16.{\left( {\frac{{ – 1}}{4}} \right)^2} + \frac{3}{5}\\ = 16.\frac{{{{\left( { – 1} \right)}^2}}}{{{4^2}}} + \frac{3}{5}\\ = 16.\frac{1}{{16}} + \frac{3}{5}\\ = 1 + \frac{3}{5} = \frac{5}{5} + \frac{3}{5}\\ = \frac{8}{5}\end{array}\)

c) \(\frac{{ – 11}}{3}:\left( {1,5.\sqrt {\frac{{16}}{9}} – \frac{{10}}{3}} \right)\)

\(\begin{array}{l} = \frac{{ – 11}}{3}:\left( {\frac{3}{2}.\frac{4}{3} – \frac{{10}}{3}} \right)\\ = \frac{{ – 11}}{3}:\left( {\frac{6}{3} – \frac{{10}}{3}} \right)\\ = \frac{{ – 11}}{3}:\frac{{ – 4}}{3}\\ = \frac{{ – 11}}{3}.\frac{3}{{ – 4}}\\ = \frac{{11}}{4}\end{array}\)

d) \(\left( {\sqrt {\frac{{81}}{{16}}} + \frac{{ – 3}}{4}} \right):{\left( { – \frac{3}{4}} \right)^2} – \left| {\frac{{ – 27}}{4}:{3^2}} \right|\)

\(\begin{array}{l} = \left( {\frac{9}{4} + \frac{{ – 3}}{4}} \right):\frac{{{{\left( { – 3} \right)}^2}}}{{{4^2}}} – \left| {\frac{{ – 27}}{4}.\frac{1}{{{3^2}}}} \right|\\ = \frac{6}{4}:\frac{9}{{16}} – \left| {\frac{{ – 27}}{4}.\frac{1}{9}} \right|\\ = \frac{6}{4}.\frac{{16}}{9} – \left| {\frac{{ – 3}}{4}} \right|\\ = \frac{8}{3} – \left[ { – \left( { – \frac{3}{4}} \right)} \right]\\ = \frac{8}{3} – \frac{3}{4} = \frac{{32}}{{12}} – \frac{9}{{12}}\\ = \frac{{23}}{{12}}\end{array}\)

Bài 2

Hướng dẫn:

a) Thực hiện phép nhân, chia các số hữu tỉ tìm \(x\).

b) Giải \({a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Rightarrow f\left( x \right) = g\left( x \right)\)

c) Tính căn bậc hai số học, vận dụng quy tắc chuyển vế tìm \(x\).

d) Giải \(A\left( x \right).B\left( x \right) = 0\)

Trường hợp 1: Giải \(A\left( x \right) = 0\)

Trường hợp 2: Giải \(B\left( x \right) = 0\)

\(\left| {A\left( x \right)} \right| = 0\) suy ra \(A\left( x \right) = 0\)

Cách giải:

a) \(\frac{1}{3}:x = 2\frac{2}{3}:\left( { – 0,3} \right)\)

\(\begin{array}{l}\frac{1}{3}:x = \frac{8}{3}:\frac{{ – 3}}{{10}}\\\frac{1}{3}:x = \frac{8}{3}.\frac{{10}}{{ – 3}}\\\frac{1}{3}:x = \frac{{80}}{{ – 9}}\\x = \frac{1}{3}:\frac{{80}}{{ – 9}} = \frac{1}{3}.\frac{{ – 9}}{{80}}\\x = \frac{{ – 3}}{{80}}\end{array}\)

Vậy \(x = \frac{{ – 3}}{{80}}\)

b) \({3^{2x}} – {2.3^5} = {3^5}\)

\(\begin{array}{l}{3^{2x}} = {3^5} + {2.3^5}\\{3^{2x}} = \left( {1 + 2} \right){.3^5}\\{3^{2x}} = {3.3^5} = {3^1}{.3^5}\\{3^{2x}} = {3^{1 + 5}}\\{3^{2x}} = {3^6}\\ \Rightarrow 2x = 6\\\,\,\,\,\,\,\,\,\,\,x = 6:2\\\,\,\,\,\,\,\,\,\,\,x = 3\end{array}\)

Vậy \(x = 3\)

c) \(2x – \sqrt {1,69} = \sqrt {1,21} \)

\(\begin{array}{l}2x – 1,3 = 1,1\\2x = 1,1 + 1,3\\2x = 2,4\\x = 2,4:2\\x = 1,2\end{array}\)

Vậy \(x = 1,2\)

d) \(\left| {x + \frac{1}{3}} \right|.\left( {{x^2} + 1} \right) = 0\)

Trường hợp 1:

\(\begin{array}{l}\left| {x + \frac{1}{3}} \right| = 0\\x + \frac{1}{3} = 0\\x = \frac{{ – 1}}{3}\end{array}\)

Trường hợp 2: \({x^2} + 1 = 0\)

Vì \({x^2} \ge 0\) với mọi \(x\) nên \({x^2} + 1 \ge 1 > 0\) với mọi \(x\)

Do đó, không có \(x\) thỏa mãn \({x^2} + 1 = 0\)

Vậy \(x = – \frac{1}{3}\)

Bài 3

Hướng dẫn:

Vận dụng tính chất tia phân giác của một góc

Dấu hiệu nhận biết hai góc kề bù

Cách giải:

Vì \(Ou\) là tia phân giác của \(\angle xOy\) nên \(\angle xOy = 2\angle uOy\) (tính chất tia phân giác của một góc)

\(Ov\) là tia phân giác của \(\angle yOz\) nên \(\angle yOz = 2\angle yOv\) (tính chất tia phân giác của một góc)

Ta có: \(\angle xOy + \angle yOz = 2\angle uOy + 2\angle yOv\)

\(\begin{array}{l} = 2.\left( {\angle uOy + \angle yOv} \right)\\ = 2.\angle uOv\\ = {2.90^0} = {180^0}\end{array}\)

Do đó, hai góc \(xOy\) và \(yOz\) là hai góc kề bù.

Bài 4

Hướng dẫn:

a) Xét \(\Delta MPB\) và \(\Delta MQC\), chứng minh hai tam giác bằng nhau từ đó suy ra các cặp cạnh bằng nhau.

b) Vận dụng tính chất đường trung trực của đoạn thẳng.

Cách giải:

a) Vì tam giác \(ABC\) cân tại \(A\) (giả thiết) nên \(\angle ABC = \angle ACB\) (tính chất của tam giác cân) suy ra \(\angle PBM = \angle QCM\)

Vì \(M\) là trung điểm của \(BC\) nên \(BM = MC\) (tính chất trung điểm của đoạn thẳng)

Vì \(MP,MQ\) lần lượt vuông góc với \(AB,AC\) nên ta có: \(\angle BPM = \angle APM = {90^0}\,;\,\angle CQM = \angle AQM = {90^0}\)

*Xét \(\Delta MPB\) và \(\Delta MQC\) có:

\(\angle BPM = \angle CQM = {90^0}\) (chứng minh trên)

\(BM = MC\) (chứng minh trên)

\(\angle PBM = \angle QCM\) (chứng minh trên)

Suy ra \(\Delta MPB = \Delta MQC\) (cạnh huyền – góc nhọn)

\( \Rightarrow MP = MQ\) (hai cạnh tương ứng)

và \(BP = QC\) (hai cạnh tương ứng)

Ta có:

\(P\) nằm giữa \(A\) và \(B\) nên \(AB = AP + BP \Rightarrow AP = AB – BP\)

\(Q\) nằm giữa \(A\) và \(C\) nên \(AC = AQ + QC \Rightarrow AQ = AC – QC\)

Mà \(AB = AC\) (do tam giác \(ABC\) cân tại \(A\)); \(BP = QC\) (chứng minh trên)

Do đó, \(AP = AQ\) (điều phải chứng minh)

b) Ta có: \(AP = AQ;MP = MQ\) nên \(A,M\)cùng cách đều hai điểm \(P,Q\) nên \(AM\) là đường trung trực của đoạn thẳng \(PQ\).

Do đó, \(AM\) vuông góc với \(PQ\).

Bài 5

Hướng dẫn:

Vận dụng kiến thức lũy thừa của một số và căn bậc hai số học của một số.

Cách giải:

Ta có: \({x^2} \ge 0\) với mọi số thực \(x\) nên \({x^2} + 81 \ge 81\) với mọi số thực \(x\).

Suy ra \(\sqrt {{x^2} + 81} \ge \sqrt {81} = 9\) với mọi số thực \(x\).

Do đó, \( – \sqrt {{x^2} + 81} \le – 9\) với mọi số thực \(x\).

Suy ra \(A = – \sqrt {{x^2} + 81} + 2030 \le – 9 + 2030\) hay \(A \le 2021\) với mọi số thực \(x\).

Vậy giá trị lớn nhất của \(A\) là \(2021\).

Dấu “=” xảy ra khi và chỉ khi \( \Leftrightarrow {x^2} = 0 \Leftrightarrow x = 0\).