Giải chi tiết Đề 10 Tổng hợp 20 đề thi học kì 1 Toán 7 kết nối tri thức – Đề thi đề kiểm tra Toán lớp 7 Kết nối tri thức.
Câu hỏi/Đề bài:
I. TRẮC NGHIỆM ( 3 điểm)Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Câu 1: Trong các câu sau câu nào đúng?
A. \(\dfrac{3}{7} \in \mathbb{Q}\) B. \(\dfrac{1}{2} \in \mathbb{Z}\). C. \(\dfrac{{ – 9}}{5} \notin \mathbb{Q}\). D. \( – 6 \in \mathbb{N}\).
Câu 2: Tập hợp các số hữu tỉ kí hiệu là:
A. N; B. \({N^*}\) C. Q ; D. Z.
Câu 3: Số đối cùa \(\dfrac{{ – 2}}{3}\) là:
A. \(\dfrac{2}{3}\); B. \(\dfrac{3}{2}\); C. \(\dfrac{{ – 3}}{2}\) ; D. \(\dfrac{2}{{ – 3}}\).
Câu 4: Điểm B trên trục số biểu diễn số hữu tỉ nào sau đây?
A. \(\dfrac{{ – 2}}{3}\); B. \(\dfrac{{ – 2}}{5}\); C. \( – \dfrac{1}{3}\) ; D. \(\dfrac{2}{6}\).
Câu 5: Phép tính nào sau đây không đúng?
A. \({x^{18}}:{x^6} = {x^{12}}\left( {x \ne 0} \right)\); B. \({x^4}.{x^8} = {x^{12}}\)
C. \({x^2}.{x^6} = {x^{12}}\) D. \({({x^3})^4} = {x^{12}}\)
Câu 6: Cho các số sau \(\dfrac{4}{6} = 0,66…6;\dfrac{3}{4} = 0,75;\dfrac{{20}}{{15}} = 1,333….3;\dfrac{5}{4} = 1,25\) số nào viết được dưới dạng số thập phân hữu hạn?
A. \(\dfrac{4}{6} = 0,66…6;\dfrac{{20}}{{15}} = 1,333….3\); B. \(\dfrac{3}{4} = 0,75;\dfrac{5}{4} = 1,25\);
C. \(\dfrac{4}{6} = 0,66…6;\dfrac{3}{4} = 0,75\); D. \(\dfrac{4}{6} = 0,66…6;\dfrac{3}{4} = 0,75;\dfrac{{20}}{{15}} = 1,333….3\)
Câu 7: Cho tam giác \(ABC\) cân tại \(A\). Phát biểu nào trong các phát biểu sau là sai?
A. \(\angle B = \angle C\) B. \(\angle C = \dfrac{{180^\circ – \angle A}}{2}\) C. \(\angle A = 180^\circ – 2\angle C\) D. \(\angle B \ne \angle C\)
Câu 8: Chọn câu trả lời sai:
Biểu đồ đoạn thẳng biểu diễn sự thay đổi của một đối tượng theo thời gian thì:
A. Trục đứng biểu diễn đại lượng ta đang quan tâm
B. Trục ngang biểu diễn thời gian;
C. Trục đứng biểu diễn các tiêu chí thống kê
D. Các đoạn thẳng nối nhau tạo thành một đường gấp khúc.
Câu 9: Biểu đồ hình quạt tròn bên dưới biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) lực lượng lao động (từ 15 tuổi trở lên) phân theo trình độ chuyên môn kĩ thuật (CMKT) của nước ta (năm 2020).
Trong năm 2020, lực lượng lao động không có trình độ CMKT gấp bao nhiêu lần lực lượng lao động có trình độ đại học trở lên (làm tròn đến hàng phần mười)?
A. 6,7 B. 6,8 C. 6,9 D. 7
Câu 10: Tiên đề Euclid được phát biểu: “ Qua một điểm M nằm ngoài đường thẳng a. ”
A. Có duy nhất một đường thẳng đi qua M và song song với a.
B. Có hai đường thẳng song song với a.
C. Có ít nhất một đường thẳng song song với a.
D. Có vô số đường thẳng song song với a.
Câu 11: Nếu \(\Delta ABC = \Delta DEF\) và \(\angle B = {70^0};\angle F = {40^0}\) thì góc \(A\) bằng:
A. \({110^0}\) B. \({70^0}\) C. \({30^0}\) D. \({40^0}\)
Câu 12: Cho hình vẽ, biết\(\widehat {\;xOy} = {20^0}\), Oy là tia phân giác của góc \(\widehat {xOz}\). Khi đó số đo \(\widehat {yOz\;}\)bằng:
A. \({20^0}\) B. \(\;{160^0}\) C. \({80^0}\) D. \(\;{40^0}\).
II. TỰ LUẬN (7 điểm)
Câu 1 (2 điểm) Tính:
a) \(\sqrt 9 – \dfrac{2}{3}\)
b) \( – 5 + \sqrt {25} + {2023^0}\)
c) \({\left( {\dfrac{1}{4}} \right)^2} \cdot {\left( {\dfrac{1}{2}} \right)^5}:2\)
d) \(\left( {2,5 + \dfrac{2}{3}} \right) – 3\dfrac{1}{3}\)
Câu 2: (1,5 điểm) Tìm x:
a) \(2x – 3,7 = 10\)
b) \(\sqrt {49} + 5x – 1 = {\left( { – 2} \right)^3}\)
c) \(\dfrac{8}{3}.|2x + 1| = 3\dfrac{1}{3}\)
Câu 3: (3,0 điểm)
Cho tam giác \(ABC\) vuông tại \(A,M\) là trung điểm của \(AC\). Trên tia đối của tia \(MB\) lấy điểm \(K\) sao cho \(BM = MK.\)
a) Chứng minh: \(\Delta ABM = \Delta CKM\);
b) Chứng minh: \(BC = AK\);
c) Chứng minh: \(CK \bot AC\).
Câu 4: (0,5 điểm) Tìm giá trị nhỏ nhất của biểu thức \(M = \sqrt {{x^2} + 169} – 2024\).