Để quy đồng mẫu hai phân số \(\frac{a}{b}\) và \(\frac{c}{d}\), ta phải tìm mẫu chung của hai phân số đó. Giải và trình bày phương pháp giải Trả lời Luyện tập 3 trang 53 SGK Toán 6 Kết nối tri thức với cuộc sống – Bài 12. Bội chung. Bội chung nhỏ nhất. Quy đồng mẫu các phân số sau: 2. Thực hiện các phép tính sau:…
Đề bài/câu hỏi:
1. Quy đồng mẫu các phân số sau:
a) \(\frac{5}{{12}}\) và \(\frac{7}{{15}}\); b) \(\frac{2}{7};\,\,\frac{4}{9}\) và \(\frac{7}{{12}}\).
2. Thực hiện các phép tính sau:
a) \(\frac{3}{8} + \frac{5}{{24}};\) b) \(\frac{7}{{16}} – \frac{5}{{12}}.\)
Hướng dẫn:
– Để quy đồng mẫu hai phân số \(\frac{a}{b}\) và \(\frac{c}{d}\), ta phải tìm mẫu chung của hai phân số đó. Thông thường ta nên chọn mẫu chung là bội chung nhỏ nhất của hai mẫu.
– Để cộng, trừ các phân số khác mẫu ta đi quy đồng mẫu số các phân số rồi thực hiện cộng(trừ) tử số và giữ nguyên mẫu.
Lời giải:
1. a) Ta có BCNN(12, 15) = 60 nên ta lấy mẫu chung của hai phân số là 60.
Thừa số phụ:
60:12 =5; 60:15=4
Ta được:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\)
\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\)
b) Ta có BCNN(7, 9, 12) = 252 nên ta lấy mẫu chung của ba phân số là 252.
Thừa số phụ:
252:7 = 36; 252:9 = 28; 252:12 = 21
Ta được:
\(\frac{2}{7} = \frac{{2.36}}{{7.36}} = \frac{{72}}{{252}}\)
\(\frac{4}{9} = \frac{{4.28}}{{9.28}} = \frac{{112}}{{252}}\)
\(\frac{7}{{12}} = \frac{{7.21}}{{12.21}} = \frac{{147}}{{252}}\)
2. a) Ta có BCNN(8, 24) = 24 nên:
\(\frac{3}{8} + \frac{5}{{24}} = \frac{{3.3}}{{8.3}} + \frac{5}{{24}} = \frac{9}{{24}} + \frac{5}{{24}} = \frac{{14}}{{24}} = \frac{7}{{12}}\)
b) Ta có BCNN(12, 16) = 48 nên:
\(\frac{7}{{16}} – \frac{5}{{12}} = \frac{{7.3}}{{16.3}} – \frac{{5.4}}{{12.4}} = \frac{{21}}{{48}} – \frac{{20}}{{48}} = \frac{1}{{48}}\).