Các số có tận cùng là 0 hoặc 5 thì chia hết cho 5; các số có tận cùng là 0;2;4;6. Trả lời Giải Bài 2 trang 46 SGK Toán 6 Chân trời sáng tạo tập 1 – Bài tập cuối chương 1. Tìm các chữ số x, y biết: a) Số 12x02y chia hết cho cả 2; 3 và 5. ……
Đề bài/câu hỏi:
Tìm các chữ số x, y biết:
a) \(\overline {12x02y} \) chia hết cho cả 2; 3 và 5.
b) \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2.
Hướng dẫn:
Các số có tận cùng là 0 hoặc 5 thì chia hết cho 5; các số có tận cùng là 0;2;4;6;8 thì chia hết cho 2 nên các số có tận cùng là 0 thì vừa chia hết cho 2, vừa chia hết cho 5; các số có tận cùng là 5 thì chia hết cho 5 nhưng không chia hết cho 2.
a) Các số có chữ số tận cùng là 0 và có tổng các chữ số chia hết cho 3 thì chia hết cho 2, 3 và 5.
b) Các số có tận cùng là 5 và có tổng các chữ số chia hết cho 9 thì chia hết cho 5 và 9 mà không chia hết cho 2.
Lời giải:
a) \(\overline {12x02y} \) chia hết cho 2 và 5 khi chữ số tận cùng của nó là 0.
=> y = 0
\(\overline {12×020} \) chia hết cho 3 khi tổng các chữ số của nó cũng chia hết cho 3.
Nên (1 + 2 + x + 0 + 2 + 0)\( \vdots \)3
=> (x + 5) \( \vdots \) 3 và \(0 \le x \le 9\)
=> x\( \in \) {1; 4; 7}
Vậy để \(\overline {12x02y} \) chia hết cho 2, 3 và cả 5 thì y = 0 và x \( \in \){1; 4; 7}.
b) \(\overline {413x2y} \) chia hết cho 5 mà không chia hết cho 2 khi chữ số tận cùng của nó là 5
=> y = 5
\(\overline {413×25} \)chia hết cho 9 khi tổng các chữ số của nó cũng chia hết cho 9
Nên (4 + 1 + 3 + x + 2 + 5) \( \vdots \)9
=> (x + 15) \( \vdots \)9 và \(0 \le x \le 9\)
=> x = 3.
Vậy \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2 thì x = 3 và y = 5.