Trang chủ Lớp 6 Toán lớp 6 Sách bài tập Toán 6 - Cánh diều Bài 122 trang 59 SBT Toán 6 – Cánh Diều Tập 2:...

Bài 122 trang 59 SBT Toán 6 – Cánh Diều Tập 2: Thực hiện phép tính: a) 0, 58 . 7^2 – – 7 . – 0, 7 . 15, 8; b) 0, 05 : 0, 5 + 7 : 0, 7 + 0, 9: 0, 009; c) 9/11 . 92/121 + 2/ – 121 . 9/11 + 31/121 . 9/11;

Áp dụng tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng. Vận dụng kiến thức giải Giải bài 122 trang 59 sách bài tập Toán 6 – Cánh Diều Tập 2 – Bài tập cuối Chương 5. Thực hiện phép tính:…

Đề bài/câu hỏi:

Thực hiện phép tính:

a) \(0,58\,.\,{7^2} – \left( { – 7} \right)\,.\,\left( { – 0,7} \right)\,.\,15,8;\)

b) \(0,05\,:\,0,5 + 7\,:\,0,7 + 0,9:0,009;\)

c) \(\frac{9}{{11}}\,.\,\frac{{92}}{{121}} + \frac{2}{{ – 121}}\,.\,\frac{9}{{11}}\, + \frac{{31}}{{121}}\,.\,\frac{9}{{11}};\)

d) \(\frac{{20\,212\,021}}{{2\,021}}\,.\,\frac{{2\,020}}{{20\,202\,020}}.\frac{{{2^3}}}{{{3^2}}}\,.\,\frac{{ – 3}}{{{2^2}}}\,\)

Hướng dẫn:

Áp dụng tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng.

Lời giải:

a)

\(\begin{array}{l}0,58\,.\,{7^2} – \left( { – 7} \right)\,.\,\left( { – 0,7} \right)\,.\,15,8\\ = 0,58\,.\,{7^2} – 7\,.\,0,7\,.\,15,8\\ = 0,58\,.\,{7^2} – 7\,.\,7\,.\,1,58\\ = {7^2}\left( {0,58 – 1,58} \right)\\ = {7^2}.( – 1)\\ = – 49\end{array}\)

b)

\(\begin{array}{l}0,05\,:\,0,5 + 7\,:\,0,7 + 0,9:0,009\\ = \frac{5}{{100}}:\frac{5}{{10}} + 7:\frac{7}{{10}} + \frac{9}{{10}}:\frac{9}{{1000}}\\ = \frac{5}{{100}}.\frac{{10}}{5} + 7.\frac{{10}}{7} + \frac{9}{{10}}.\frac{{1000}}{9}\\ = 0,1 + 10 + 100\\ = 110,1.\end{array}\)

c)

\(\begin{array}{l}\frac{9}{{11}}\,.\,\frac{{92}}{{121}} + \frac{2}{{ – 121}}\,.\,\frac{9}{{11}}\, + \frac{{31}}{{121}}\,.\,\frac{9}{{11}}\\ = \frac{9}{{11}}\,.\,\left( {\frac{{92}}{{121}} + \frac{2}{{ – 121}}\,\, + \frac{{31}}{{121}}} \right)\\ = \frac{9}{{11}}\,.\,\left( {\frac{{92}}{{121}} + \frac{{ – 2}}{{121}}\,\, + \frac{{31}}{{121}}} \right)\\ = \frac{9}{{11}}\,.\,\frac{{92 + ( – 2) + 31}}{{121}}\\ = \frac{9}{{11}}\,.\,\frac{{121}}{{121}}\\ = \frac{9}{{11}}.\end{array}\)

d)

\(\begin{array}{l}\frac{{20\,212\,021}}{{2\,021}}\,.\,\frac{{2\,020}}{{20\,202\,020}}.\frac{{{2^3}}}{{{3^2}}}\,.\,\frac{{ – 3}}{{{2^2}}}\,\\ = \left( {\frac{{20\,212\,021}}{{2\,021}}\,.\,\frac{{2\,020}}{{20\,202\,020}}} \right).\left( {\frac{{{2^3}}}{{{3^2}}}\,.\,\frac{{ – 3}}{{{2^2}}}} \right)\,\\ = \left( {\frac{{2021.10\,001}}{{2\,021}}\,.\,\frac{{2\,020}}{{2020.10\,001}}} \right).\left( {\frac{{{2^3}.3.( – 1)}}{{{3^2}{{.2}^2}}}\,} \right)\,\\ = \frac{{2\,021.10\,001.\,2\,020}}{{2\,021.\,2\,020\,.10\,001}}\,\,.\,\,\frac{{2.( – 1)}}{3}\\ = 1.\frac{{( – 2)}}{3}\\ = \frac{{ – 2}}{3}\end{array}\)