Lời giải Lời giải Đề thi giữa kì 1 – Đề số 5 – Đề thi đề kiểm tra Toán lớp 6 Cánh diều.
Câu hỏi/Đề bài:
Phần I: Trắc nghiệm
1. C |
2. C |
3. B |
4. A |
5. B |
6. C |
7. B |
8. B |
9. A |
10. D |
11. C |
12. B |
Câu 1
Hướng dẫn:
Vận dụng kiến thức về tập hợp số tự nhiên
Cách giải:
Tập hợp \(A\) gồm các số tự nhiên nhỏ hơn \(6\) là \(A = \left\{ {0;1;2;3;4;5} \right\}\)
Chọn C.
Câu 2
Hướng dẫn:
Vận dụng quy tắc nhân lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ.
Cách giải:
Ta có: \(8.8.8.8.8.8.8 = {8^1}{.8^1}{.8^1}{.8^1}{.8^1}{8^1}{.8^1} = {8^{1 + 1 + 1 + 1 + 1 + 1 + 1}} = {8^7}\)
Chọn C.
Câu 3
Hướng dẫn:
Vận dụng bài toán ngoặc để tìm \(x\): muốn tìm số hạng chưa biết của một tổng ta lấy tổng trừ đi số hạng đã biết.
Cách giải:
\(x + 189 = 249\)
\(\begin{array}{l}x = 249 – 189\\x = 60\end{array}\)
Vậy \(x = 60\)
Chọn B.
Câu 4
Hướng dẫn:
Vận dụng kiến thức về thứ tự thực hiện phép tính:
– Với biểu thức không có dấu ngoặc: Lũy thừa \( \to \) Nhân và chia \( \to \) Cộng và trừ
– Với biểu thức có dấu ngoặc: \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
Cách giải:
\(\begin{array}{l}\,\,\,\,\,{5.2^3} + {3.2^2}\\ = 5.8 + 3.4\\ = 40 + 12\\ = 52\end{array}\)
Chọn A.
Câu 5
Hướng dẫn:
Vận dụng dấu hiệu chia hết cho\(2\) và dấu hiệu chia hết cho \(5\) để đưa ra kết luận.
Cách giải:
Số có chữ số tận cùng là \(0;2;4;6;8\) thì chia hết cho \(2\).
Số có chữ số tận cùng là \(0;5\) thì chia hết cho \(5\).
Vậy số có chữ số tận cùng là \(0\) thì chia hết cho cả \(2\) và \(5\).
Vậy số \(60\) là số thỏa mãn.
Chọn B.
Câu 6
Hướng dẫn:
Vận dụng dấu hiệu chia hết cho \(3\) và dấu hiệu chia hết cho \(9\).
Cách giải:
Ta có: \(3 + 2 = 5\) mà \(5\not \vdots 3;5\not \vdots 9\) nên \(32\not \vdots 3;32\not \vdots 9\) suy ra loại đáp án A.
Ta có: \(4 + 5 = 9\) mà \(9 \vdots 3;9 \vdots 9\) nên \(45 \vdots 3;45 \vdots 9\) suy ra loại đáp án B.
Ta có: \(1 + 5 = 6\) mà \(6 \vdots 3;6\not \vdots 9\) nên \(15 \vdots 3;15\not \vdots 9\) suy ra chọn đáp án C.
Ta có: \(5 + 4 = 9\) mà \(9 \vdots 3;9 \vdots 9\) nên \(54 \vdots 3;54 \vdots 9\) suy ra loại đáp án D.
Chọn C.
Câu 7
Hướng dẫn:
Vận dụng kiến thức về số nguyên tố: Số nguyên tố là số tự nhiên lớn hơn \(1\), chỉ có hai ước là \(1\) và chính nó.
Cách giải:
Ta có: \(13\) là số nguyên tố vì \(13 > 1\) và Ư\(\left( {13} \right) = \left\{ {1;13} \right\}\)
Chọn B.
Câu 8
Hướng dẫn:
Vận dụng cách tìm ước chung của hai số \(a\) và \(b\):
– Bước 1: Viết tập hợp các ước của \(a\) và ước của \(b\): Ư\(\left( a \right)\) và Ư\(\left( b \right)\)
– Bước 2: Tìm những phần tử chung của Ư\(\left( a \right)\) và Ư\(\left( b \right)\)
Cách giải:
Ta có: Ư\(\left( {30} \right) = \left\{ {1;2;3;5;6;10;15;30} \right\}\)
Ư\(\left( {48} \right) = \left\{ {1;2;3;4;6;8;12;16;24} \right\}\)
Do đó, ƯC\(\left( {30,48} \right) = \left\{ {1;2;3;6} \right\}\)
Vậy tập hợp ƯC\(\left( {30,48} \right)\) có \(4\) phần tử.
Chọn B.
Câu 9
Hướng dẫn:
Vận dụng quy tắc tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố:
– Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
– Bước 2: Chọn ra các thừa số nguyên tô chung và riêng.
– Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó.
Tích đó là BCNN phải tìm.
Cách giải:
Ta có: \(12 = {2^2}.3\)
\(\begin{array}{l}90 = {2.3^2}.5\\150 = {2.3.5^2}\end{array}\)
Suy ra BCNN\(\left( {12,90,150} \right) = {2^2}{.3^2}{.5^2} = 900\)
Chọn A.
Câu 10
Hướng dẫn:
Vận dụng đặc điểm của hình tam giác đều, hình vuông và hình thoi.
Cách giải:
Tam giác đều có \(3\) góc bằng nhau và bằng \({60^0}\) nên đáp án A sai.
Hình vuông là hình có \(4\) cạnh bằng nhau, \(4\) góc bằng nhau và bằng \({90^0}\) nên đáp án B sai.
Hình thoi có 2 đường chéo không bằng nhau nên đáp án C sai.
Hình vuông có \(2\) đường chéo bằng nhau nên đáp án D đúng nên chọn D.
Chọn D.
Câu 11
Hướng dẫn:
Vận dụng đặc điểm của hình vuông, hình chữ nhật, hình thoi và hình lục giác đều.
Cách giải:
Hình lục giác đều có \(3\) đường chéo chính bằng nhau nên đáp án A đúng.
Hình chữ nhật có 2 đường chéo bằng nhau nên đáp án B đúng.
Hình thoi có \(2\) đường chéo không bằng nhau nên đáp án C sai nên chọn C.
Hình vuông có \(2\) đường chéo bằng nhau nên đáp án D đúng.
Chọn C.
Câu 12
Hướng dẫn:
Vận dụng công thức tính diện tích hình thoi có độ dài hai đường chéo \(m\) và \(n\) là \(S = \dfrac{{m.n}}{2}\)
Cách giải:
Diện tích của hình thoi là: \(S = \dfrac{{40.30}}{2} = \dfrac{{1200}}{2} = 600{m^2}\)
Chọn B.
Phần II. Tự luận (7 điểm):
Bài 1
Hướng dẫn:
Vận dụng cách tìm ước chung của hai số \(a\) và \(b\):
– Bước 1: Viết tập hợp các ước của \(a\) và ước của \(b\): Ư\(\left( a \right)\) và Ư\(\left( b \right)\)
– Bước 2: Tìm những phần tử chung của Ư\(\left( a \right)\) và Ư\(\left( b \right)\)
Cách giải:
Ta có: Ư\(\left( {12} \right) = \left\{ {1;2;3;4;6;12} \right\}\)
Ư\(\left( {36} \right) = \left\{ {1;2;3;4;6;9;12;18;36} \right\}\)
Ư\(\left( {60} \right) = \left\{ {1;2;3;4;5;6;10;12;15;60} \right\}\)
Do đó, ƯC\(\left( {12,36,60} \right) = \left\{ {1;2;3;4;6;12} \right\}\)
Vậy tập hợp ƯC\(\left( {12,36,60} \right)\) có \(6\) phần tử.
Bài 2
Hướng dẫn:
Vận dụng kiến thức về bội chung của hai hay nhiều số.
Cách giải:
Số tự nhiên \(x\) biết số đó vừa chia hết cho \(4\) và \(12\) nên \(x \in \)BC\(\left( {4,12} \right)\)
Ta có: \(4 = {2^2}\)
\(12 = {2^2}.3\)
Suy ra, BCNN\(\left( {4,12} \right) = {2^2}.3 = 12\)
Nên BC\(\left( {4,12} \right) = \left\{ {0;12;24;36;…} \right\}\)
Mà \(10 \le x \le 24\), suy ra \(x = 12\) hoặc \(x = 24\)
Bài 3
Hướng dẫn:
Vận dụng kiến thức về thứ tự thực hiện phép tính:
– Với biểu thức không có dấu ngoặc: Lũy thừa \( \to \) Nhân và chia \( \to \) Cộng và trừ
– Với biểu thức có dấu ngoặc: \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
Cách giải:
a) \(9.\left[ {140 – {{\left( {15 – 5} \right)}^2}} \right]\) \(\begin{array}{l} = 9.\left( {140 – {{10}^2}} \right)\\ = 9.\left( {140 – 100} \right)\\ = 9.40\\ = 360\end{array}\) |
b) \(53.205 + 46.205 + 205\) \(\begin{array}{l} = 205.\left( {53 + 46 + 1} \right)\\ = 205.100\\ = 20500\end{array}\) |
Bài 4
Hướng dẫn:
Giải bài toán ngược để tìm \(x\)
Cách giải:
a) \(7 + 2\left( {x – 3} \right) = 11\) \(\begin{array}{l}2\left( {x – 3} \right) = 11 – 7\\2\left( {x – 3} \right) = 4\\x – 3 = 4:2\\x – 3 = 2\\x = 2 + 3\\x = 5\end{array}\) Vậy \(x = 5\). |
b) \({\left( {x + 2} \right)^3} + {4.3^2} = 63\) \(\begin{array}{l}{\left( {x + 2} \right)^3} + 4.9 = 63\\{\left( {x + 2} \right)^3} + 36 = 63\\{\left( {x + 2} \right)^3} = 63 – 36\\{\left( {x + 2} \right)^3} = 27\\{\left( {x + 2} \right)^3} = {3^3}\\x + 2 = 3\\x = 3 – 2\\x = 1\end{array}\) Vậy \(x = 1\). |
Bài 5
Hướng dẫn:
Biến đổi \(46 < 2x + 4 < 100 \Rightarrow 21 < x < 48\).
Liệt kê các phần tử của \(x\) thỏa mãn.
Cách giải:
Ta có: \(46 < 2x + 4 < 100\)
\(\begin{array}{l} \Rightarrow 42 < 2x < 96\\ \Rightarrow 21 < x < 48\end{array}\)
Mà \(x\) là số tự nhiên nên \(x \in \left\{ {22;\,\,23;\,\, \ldots ;\,\,47;\,\,48} \right\}\).
\( \Rightarrow \) Có \(\left( {48 – 22} \right):1 + 1 = 27\) (số) thỏa mãn.
Vậy có tất cả \(27\) số tự nhiên \(x\) thỏa mãn đề bài.
Bài 6
Hướng dẫn:
Tính diện tích phần vườn hình thang cân
Tính diện tích phần mảnh vườn hình chữ nhật
Tính diện tích của cả mảnh vườn
Tính số tiền bác An phải chi trả.
Cách giải:
Diện tích phần mảnh vườn hình thang cân là: \(\dfrac{{\left( {5 + 7} \right).2}}{2} = 12\left( {{m^2}} \right)\)
Diện tích phần mảnh vườn hình chữ nhật là: \(6.7 = 42\left( {{m^2}} \right)\)
Diện tích của mảnh vườn là: \(12 + 42 = 54\left( {{m^2}} \right)\)
Số tiền bác An phải chi trả để trải kín cỏ là: \(8000.54 = 432000\) (đồng)
Bài 7
Hướng dẫn:
Nhóm các số hạng hợp lí với nhau, tính lũy thừa của một cơ số, tính tổng.
Cách giải:
Ta có: \(S = 1 + {5^2} + {5^4} + … + {5^{2020}}\)
\(\begin{array}{l} = \left( {1 + {5^4}} \right) + \left( {{5^2} + {5^6}} \right) + … + \left( {{5^{2016}} + {5^{2020}}} \right)\\ = \left( {1 + {5^4}} \right) + {5^2}.\left( {1 + {5^4}} \right) + … + {5^{2016}}.\left( {1 + {5^4}} \right)\\ = \left( {1 + {5^4}} \right).\left( {1 + {5^2} + … + {5^{2016}}} \right)\\ = 626.\left( {1 + {5^2} + … + {5^{2016}}} \right)\end{array}\)
Mà \(626 \vdots 313\) nên \(S \vdots 313\)