Giải chi tiết Câu hỏi Luyện tập 2 trang 38 SGK Toán 12 Kết nối tri thức – Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn. Tham khảo: Sử dụng kiến thức về cách giải bài toán tối ưu hóa đơn giản để tính.
Câu hỏi/Đề bài:
Anh An chèo thuyền từ điểm A trên bờ một con sông thẳng rộng 3km và muốn đến điểm B ở bờ đối diện cách 8km về phía hạ lưu càng nhanh càng tốt (H.1.35). Anh An có thể chèo thuyền trực tiếp qua sông đến điểm C rồi chạy bộ đến B, hoặc anh có thể chèo thuyển thẳng đến B, hoặc anh cũng có thể chèo thuyền đến một điểm D nào đó giữa C và B rồi chạy bộ đến B. Nếu vận tốc chèo thuyền là 6km/h và vận tốc chạy bộ là 8km/h thì anh An phải chèo thuyền sang bờ ở điểm nào để đến B càng sớm càng tốt? (Giả sử rằng vận tốc của nước là không đáng kể so với vận tốc chèo thuyền của anh An).
Hướng dẫn:
Sử dụng kiến thức về cách giải bài toán tối ưu hóa đơn giản để tính:
Bước 1: Xác định đại lượng Q mà ta cần làm cho giá trị của đại lượng ấy lớn nhất hoặc nhỏ nhất và biểu diễn nó qua các đại lượng khác trong bài toán.
Bước 2: Chọn một đại lượng thích hợp nào đó, kí hiệu là x, và biểu diễn các đại lượng khác ở Bước 1 theo x. Khi đó, đại lượng Q sẽ là hàm số của một biến x. Tìm tập xác định của hàm số \(Q = Q\left( x \right)\).
Bước 3: Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của hàm số \(Q = Q\left( x \right)\) bằng các phương pháp đã biết và kết luận.
Lời giải:
Gọi độ dài đoạn CD là x (km \(0 < x < 8\))
Quãng đường AD dài: \(\sqrt {A{C^2} + D{C^2}} = \sqrt {9 + {x^2}} \left( {km} \right)\)
Quãng đường BD dài \(8 – x\left( {km} \right)\)
Thời gian người đó đi đến B bằng cách chèo thuyền đến một điểm D nào đó giữa C và B rồi chạy bộ đến B là: \(\frac{{\sqrt {9 + {x^2}} }}{6} + \frac{{8 – x}}{8}\) (giờ)
Xét hàm số \(y = \frac{{\sqrt {9 + {x^2}} }}{6} + \frac{{8 – x}}{8}\) với \(0 < x < 8\)
Ta có: \(y’ = \frac{x}{{6\sqrt {9 + {x^2}} }} – \frac{1}{8}\)
\(y’ = 0 \Leftrightarrow \frac{x}{{6\sqrt {9 + {x^2}} }} – \frac{1}{8} = 0 \Leftrightarrow 4x = 3\sqrt {9 + {x^2}} \Leftrightarrow \left\{ \begin{array}{l}16{x^2} = 9\left( {9 + {x^2}} \right)\\x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} = \frac{{81}}{7}\\x > 0\end{array} \right. \Leftrightarrow x = \frac{9}{{\sqrt 7 }}\)
Bảng biến thiên:
Vậy anh An phải chèo thuyền sang bờ ở điểm D cách B một khoảng bằng \(\frac{9}{{\sqrt 7 }}km\) thì đến B sớm nhất.