Trang chủ Lớp 12 Toán lớp 12 SGK Toán 12 - Kết nối tri thức Câu hỏi Hoạt động 7 trang 54 Toán 12 Kết nối tri...

Câu hỏi Hoạt động 7 trang 54 Toán 12 Kết nối tri thức: Trong không gian, cho hai vectơ → a và → b khác → 0 . Lấy điểm O và vẽ các vectơ → OA = → a

Đáp án Câu hỏi Hoạt động 7 trang 54 SGK Toán 12 Kết nối tri thức – Bài 6. Vectơ trong không gian. Hướng dẫn: Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B.

Câu hỏi/Đề bài:

Trong không gian, cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) khác \(\overrightarrow 0 \). Lấy điểm O và vẽ các vectơ\(\overrightarrow {OA} = \overrightarrow a ,\overrightarrow {OB} = \overrightarrow b \). Lấy điểm O’ khác O và vẽ các vectơ \(\overrightarrow {O’A’} = \overrightarrow a ,\overrightarrow {O’B’} = \overrightarrow b \) (H.2.21).

a) Hãy giải thích vì sao \(\overrightarrow {AB} = \overrightarrow {A’B’} \).

b) Áp dụng định lí côsin cho hai tam giác OAB và O’A’B’ để giải thích vì sao \(\widehat {AOB} = \widehat {A’O’B’}\)

Hướng dẫn:

a) Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)

b) Sử dụng kiến thức về định lí côsin để chứng minh: Cho tam giác ABC có, khi đó, \(\cos \widehat A = \frac{{A{B^2} + A{C^2} – B{C^2}}}{{2.AB.AC}}\)

Lời giải:

a) Ta có: \(\overrightarrow {AB} = \overrightarrow {AO} + \overrightarrow {OB} ;\overrightarrow {A’B’} = \overrightarrow {A’O’} + \overrightarrow {O’B’} \)

Mà \(\overrightarrow {OA} = \overrightarrow a ,\overrightarrow {OB} = \overrightarrow b ,\overrightarrow {O’A’} = \overrightarrow a ,\overrightarrow {O’B’} = \overrightarrow b \Rightarrow \overrightarrow {AO} = \overrightarrow {A’O’} ;\overrightarrow {OB} = \overrightarrow {O’B’} \)

Do đó, \(\overrightarrow {AB} = \overrightarrow {A’B’} \)

b) Áp dụng định lí côsin vào tam giác AOB ta có: \(\cos \widehat {AOB} = \frac{{O{A^2} + O{B^2} – A{B^2}}}{{2.OA.OB}}\)

Áp dụng định lí côsin vào tam giác A’O’B’ ta có: \(\cos \widehat {A’O’B’} = \frac{{O’A{‘^2} + O’B{‘^2} – A’B{‘^2}}}{{2.O’A’.O’B’}}\)

Vì \(\overrightarrow {AB} = \overrightarrow {A’B’} \Rightarrow AB = A’B’,\overrightarrow {AO} = \overrightarrow {A’O’} \Rightarrow OA = O’A’;\overrightarrow {OB} = \overrightarrow {O’B’} \Rightarrow OB = O’B’\)

Do đó, \(\cos \widehat {AOB} = \cos \widehat {A’O’B’} \Rightarrow \widehat {AOB} = \widehat {A’O’B’}\)