Trang chủ Lớp 12 Toán lớp 12 SGK Toán 12 - Kết nối tri thức Câu hỏi Hoạt động 4 trang 44 Toán 12 Kết nối tri...

Câu hỏi Hoạt động 4 trang 44 Toán 12 Kết nối tri thức: Trong không gian Oxyz, cho hai điểm phân biệt A_1 x_1;y_1;z_1, A_2 x_2;y_2;z_2 . a) Hãy chỉ ra một vectơ chỉ phương của đường thẳng A_1/A_2

Giải chi tiết Câu hỏi Hoạt động 4 trang 44 SGK Toán 12 Kết nối tri thức – Bài 15. Phương trình đường thẳng trong không gian. Gợi ý: Sử dụng kiến thức về phương trình tham số của đường thẳng để viết phương trình tham số đường thẳng.

Câu hỏi/Đề bài:

Trong không gian Oxyz, cho hai điểm phân biệt \({A_1}\left( {{x_1};{y_1};{z_1}} \right),{A_2}\left( {{x_2};{y_2};{z_2}} \right)\).

a) Hãy chỉ ra một vectơ chỉ phương của đường thẳng \({A_1}{A_2}\).

b) Viết phương trình đường thẳng \({A_1}{A_2}\).

Hướng dẫn:

Sử dụng kiến thức về phương trình tham số của đường thẳng để viết phương trình tham số đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\). Hệ phương trình \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) được gọi là phương trình tham số của đường thẳng \(\Delta \) (t là tham số, \(t \in \mathbb{R}\)).

Sử dụng kiến thức về phương trình chính tắc của đường thẳng để viết phương trình đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) với a, b, c là các số khác 0. Hệ phương trình \(\frac{{x – {x_0}}}{a} = \frac{{y – {y_0}}}{b} = \frac{{z – {z_0}}}{c}\) được gọi là phương trình chính tắc của đường thẳng \(\Delta \).

Lời giải:

a) Một vectơ chỉ phương của đường thẳng \({A_1}{A_2}\) là \(\overrightarrow {{A_1}{A_2}} \).

b) Đường thẳng \({A_1}{A_2}\) có vectơ chỉ phương là \(\overrightarrow {{A_1}{A_2}} \left( {{x_2} – {x_1};{y_2} – {y_1};{z_2} – {z_1}} \right)\).

Mà đường thẳng \({A_1}{A_2}\) đi qua điểm \({A_1}\left( {{x_1};{y_1};{z_1}} \right)\) nên phương trình đường thẳng tham số \({A_1}{A_2}\) là: \(\left\{ \begin{array}{l}x = {x_1} + \left( {{x_2} – {x_1}} \right)t\\y = {y_1} + \left( {{y_2} – {y_1}} \right)t\\z = {z_1} + \left( {{z_2} – {z_1}} \right)t\end{array} \right.\)

Phương trình chính tắc của đường thẳng \({A_1}{A_2}\) là: \(\frac{{x – {x_1}}}{{{x_2} – {x_1}}} = \frac{{y – {y_1}}}{{{y_2} – {y_1}}} = \frac{{z – {z_1}}}{{{z_2} – {z_1}}}\).