Lời giải Câu hỏi Hoạt động 2 trang 75 SGK Toán 12 Kết nối tri thức – Bài 19. Công thức xác suất toàn phần và công thức Bayes. Tham khảo: Sử dụng kiến thức về định nghĩa xác suất có điều kiện để hoàn thành câu.
Câu hỏi/Đề bài:
Trong tình huống mở đầu Mục 2, gọi A là biến cố: “Ông M mắc bệnh hiểm nghèo X”; B là biến cố: “Xét nghiệm cho kết quả dương tính”.
a) Nêu các nội dung còn thiếu tương ứng với “(?)” để hoàn thành các câu sau đây:
- \(P\left( {A|B} \right)\) là xác suất để (?) với điều kiện (?);
- \(P\left( {B|A} \right)\) là xác suất để (?) với điều kiện (?).
b) 0,95 là \(P\left( {A|B} \right)\) hay \(P\left( {B|A} \right)\)? Có phải ông M có xác suất 0,95 mắc bệnh hiểm nghèo X không?
Hướng dẫn:
Sử dụng kiến thức về định nghĩa xác suất có điều kiện để hoàn thành câu: Cho hai biến cố A và B. Xác suất của biến cố A, tính trong điều kiện biết rằng nếu biến cố B đã xảy ra, được gọi là xác suất của A với điều kiện B và kí hiệu là \(P\left( {A|B} \right)\)
Lời giải:
a) \(P\left( {A|B} \right)\) là xác suất để ông M mắc bệnh hiểm nghèo X với điều kiện xét nghiệm kết quả cho dương tính.
\(P\left( {B|A} \right)\) là xác suất để xét nghiệm kết quả cho dương tính với điều kiện ông M mắc bệnh hiểm nghèo X.
b) 0,95 là \(P\left( {B|A} \right)\). Không phải ông M có xác suất 0,95 mắc bệnh hiểm nghèo X.