Trang chủ Lớp 12 Toán lớp 12 SGK Toán 12 - Kết nối tri thức Câu hỏi Hoạt động 1 trang 67 Toán 12 Kết nối tri...

Câu hỏi Hoạt động 1 trang 67 Toán 12 Kết nối tri thức: Trong không gian Oxyz, cho hai vectơ → a = 1;0;5 và → b = 1;3;9 . a) Biểu diễn hai vectơ → a

Lời giải Câu hỏi Hoạt động 1 trang 67 SGK Toán 12 Kết nối tri thức – Bài 8. Biểu thức tọa độ của các phép toán vectơ. Tham khảo: Sử dụng kiến thức về tọa độ của vectơ trong không gian để tính: Trong không gian Oxyz.

Câu hỏi/Đề bài:

Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( {1;0;5} \right)\) và \(\overrightarrow b = \left( {1;3;9} \right)\).

a) Biểu diễn hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) qua các vectơ đơn vị \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \).

b) Biểu diễn hai vectơ \(\overrightarrow a + \overrightarrow b \) và \(2\overrightarrow a \) qua các vectơ đơn vị \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \), từ đó xác định tọa độ của hai vectơ đó.

Hướng dẫn:

Sử dụng kiến thức về tọa độ của vectơ trong không gian để tính: Trong không gian Oxyz, cho vectơ \(\overrightarrow a \) tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của \(\overrightarrow a \) đối với hệ tọa độ Oxyz. Khi đó, ta viết \(\overrightarrow a = \left( {x;y;z} \right)\) hoặc \(\overrightarrow a \left( {x;y;z} \right)\).

Lời giải:

a) Ta có: \(\overrightarrow a = \left( {1;0;5} \right) = \overrightarrow i + 5\overrightarrow k \); \(\overrightarrow b = \left( {1;3;9} \right) = \overrightarrow i + 3\overrightarrow j + 9\overrightarrow k \).

b) Ta có: \(\overrightarrow a + \overrightarrow b = \overrightarrow i + 5\overrightarrow k + \overrightarrow i + 3\overrightarrow j + 9\overrightarrow k = 2\overrightarrow i + 3\overrightarrow j + 14\overrightarrow k \). Do đó, \(\overrightarrow a + \overrightarrow b = \left( {2;3;14} \right)\)

\(2\overrightarrow a = 2\left( {\overrightarrow i + 5\overrightarrow k } \right) = 2\overrightarrow i + 10\overrightarrow k \). Do đó, \(2\overrightarrow a = \left( {2;0;10} \right)\)