Sử dụng kiến thức về vị trí tương đối của hai đường thẳng để xét vị trí tương đối giữa hai đường thẳng. Trả lời Giải bài tập 5.16 trang 48 SGK Toán 12 tập 2 – Kết nối tri thức – Bài 15. Phương trình đường thẳng trong không gian. Trong không gian Oxyz, xác định vị trí tương đối giữa hai đường thẳng: \({\Delta _1}:…
Đề bài/câu hỏi:
Trong không gian Oxyz, xác định vị trí tương đối giữa hai đường thẳng: \({\Delta _1}:\left\{ \begin{array}{l}x = – 1 + t\\y = 1\\z = 3 + 2t\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = – 1 + 2s\\y = 2 + s\\z = 1 + 3s\end{array} \right.\).
Hướng dẫn:
Sử dụng kiến thức về vị trí tương đối của hai đường thẳng để xét vị trí tương đối giữa hai đường thẳng: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) lần lượt đi qua các điểm \({A_1}\left( {{x_1};{y_1};{z_1}} \right),{A_2}\left( {{x_2};{y_2};{z_2}} \right)\) và tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó:
\({\Delta _1}//{\Delta _2} \Leftrightarrow \) \(\overrightarrow {{u_1}} \) cùng phương với \(\overrightarrow {{u_2}} \) và \({A_1}\not \in {\Delta _2}\)
\({\Delta _1} \equiv {\Delta _2} \Leftrightarrow \) \(\overrightarrow {{u_1}} \) cùng phương với \(\overrightarrow {{u_2}} \) và \({A_1} \in {\Delta _2}\)
\({\Delta _1}\) và \({\Delta _2}\) chéo nhau \( \Leftrightarrow \overrightarrow {{A_1}{A_2}} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne 0\)
\({\Delta _1}\) và \({\Delta _2}\) cắt nhau \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \\\overrightarrow {{A_1}{A_2}} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 0\end{array} \right.\)
Lời giải:
Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} \left( {1;0;2} \right)\) và đi qua điểm \(A\left( { – 1;1;3} \right)\).
Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} \left( {2;1;3} \right)\) và đi qua điểm \(B\left( { – 1;2;1} \right)\).
Vì \(\frac{1}{2} \ne \frac{0}{1}\) nên \(\overrightarrow {{u_1}} \) không cùng phương với \(\overrightarrow {{u_2}} \)
Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&2\\1&3\end{array}} \right|,\left| {\begin{array}{*{20}{c}}2&1\\3&2\end{array}} \right|,\left| {\begin{array}{*{20}{c}}1&0\\2&1\end{array}} \right|} \right) = \left( { – 2;1;1} \right) \ne \overrightarrow 0 \), \(\overrightarrow {AB} \left( {0;1; – 2} \right)\)
Vì \(\overrightarrow {AB} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 0.\left( { – 2} \right) + 1.1 + \left( { – 2} \right).1 = – 1 \ne 0\) nên \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.