Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: . \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \). Giải và trình bày phương pháp giải Giải bài tập 4.27 trang 28 SGK Toán 12 tập 2 – Kết nối tri thức – Bài tập cuối chương 4. Một vật chuyển động có gia tốc là \(a\left( t \right) = 3{t^2} + t\left( {m/{s^2}} \right)\)….
Đề bài/câu hỏi:
Một vật chuyển động có gia tốc là \(a\left( t \right) = 3{t^2} + t\left( {m/{s^2}} \right)\). Biết rằng vận tốc ban đầu của vật là 2m/s. Vận tốc của vật đó sau 2 giây là
A. 8m/s.
B. 10m/s.
C. 12m/s.
D. 16m/s.
Hướng dẫn:
Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: .\(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \).
Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx + \int {g\left( x \right)dx} } \)
Sử dụng kiến thức về nguyên hàm của hàm lũy thừa để tính: \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\left( {\alpha \ne – 1} \right)\)
Lời giải:
Ta có: \(v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {3{t^2} + t} \right)dt} = {t^3} + \frac{{{t^2}}}{2} + C\)
Vì vận tốc ban đầu của vật là 2m/s nên: \({0^3} + \frac{{{0^2}}}{2} + C = 2\), do đó, \(C = 2\)
Suy ra: \(v\left( t \right) = {t^3} + \frac{{{t^2}}}{2} + 2\).
Vận tốc của vật đó sau 2 giây là: \(v\left( 2 \right) = {2^3} + \frac{{{2^2}}}{2} + 2 = 12\left( {m/s} \right)\)
Chọn C