Sử dụng kiến thức về trung điểm của đoạn thẳng để chứng minh: Nếu I là trung điểm của đoạn thẳng AB. Lời giải Giải bài tập 2.26 trang 73 SGK Toán 12 tập 1 – Kết nối tri thức – Bài tập cuối Chương 2. Cho hình hộp ABCD.A’B’C’D’. Lấy M là trung điểm của đoạn thẳng CC’. Vectơ \(\overrightarrow {AM} \) bằng A….
Đề bài/câu hỏi:
Cho hình hộp ABCD.A’B’C’D’. Lấy M là trung điểm của đoạn thẳng CC’. Vectơ \(\overrightarrow {AM} \) bằng A. \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA’} \).B. \(\overrightarrow {AB} + \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AA’} \).C. \(\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}\overrightarrow {AA’} \).D. \(\frac{1}{2}\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA’} \).
Hướng dẫn:
Sử dụng kiến thức về trung điểm của đoạn thẳng để chứng minh: Nếu I là trung điểm của đoạn thẳng AB, với điểm M tùy ý ta có: \(\overrightarrow {MA} + \overrightarrow {MB} = 2\overrightarrow {MI} \).
Sử dụng kiến thức về quy tắc hình hộp để chứng minh: Cho hình hộp ABCD.A’B’C’D’. Khi đó, ta có: \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA’} = \overrightarrow {AC’} \)
Sử dụng quy tắc hình bình hành để chứng minh: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Lời giải:
Vì M là trung điểm của CC’ nên \(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AC’} + \overrightarrow {AC} } \right) = \frac{1}{2}\left( {\overrightarrow {AA’} + \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AB} + \overrightarrow {AD} } \right)\)
\( = \frac{1}{2}\left( {\overrightarrow {AA’} + 2\overrightarrow {AB} + 2\overrightarrow {AD} } \right) = \frac{1}{2}\overrightarrow {AA’} + \overrightarrow {AB} + \overrightarrow {AD} \)
Chọn B.