Trang chủ Lớp 12 Toán lớp 12 SGK Toán 12 - Chân trời sáng tạo Câu hỏi Khám phá 6 trang 49 Toán 12 Chân trời sáng...

Câu hỏi Khám phá 6 trang 49 Toán 12 Chân trời sáng tạo: Trong không gian, cho → u và → v thoả mãn | → u | = 2, | → v | = 3. Lấy một điểm A bất kì

Hướng dẫn giải Câu hỏi Khám phá 6 trang 49 SGK Toán 12 Chân trời sáng tạo – Bài 1. Vectơ và các phép toán trong không gian. Gợi ý: Trong không gian, cho hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) đều khác vectơ không.

Câu hỏi/Đề bài:

Trong không gian, cho \(\overrightarrow u \) và \(\overrightarrow v \) thoả mãn \(|\overrightarrow u | = 2\) , \(|\overrightarrow v | = 3\). Lấy một điểm A bất kì, gọi B và C là hai điểm sao cho \(\overrightarrow {AB} = \overrightarrow u \), \(\overrightarrow {AC} = \overrightarrow v \) (Hình 24). Giả sử \(\widehat {BAC} = 60^\circ \)

a) Tính góc \((\overrightarrow u ,\overrightarrow v )\)

b) Trong mặt phẳng (ABC), tính tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \)

Hướng dẫn:

a) Trong không gian, cho hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) đều khác vectơ không. Từ một điểm A bất kỳ, gọi B và C là hai điểm sao cho \(\overrightarrow {AB} = \overrightarrow u \) và \(\overrightarrow {AC} = \overrightarrow v \). Khi đó góc \(\widehat {BAC}\) được gọi là góc giữa hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \).

b) Công thức tính tích vô hướng của 2 vecto: \(\overrightarrow u .\overrightarrow v = |\overrightarrow u |.|\overrightarrow v |.\cos (\overrightarrow u ,\overrightarrow v )\)

Lời giải:

a) Góc \((\overrightarrow u ,\overrightarrow v )\) = \(\widehat {BAC} = 60^\circ \)

b) \(\overrightarrow {AB} .\overrightarrow {AC} \) = \(AB.AC.\cos \widehat {BAC} = 2.3.\cos 60^\circ = 3\)