Trang chủ Lớp 12 Toán lớp 12 SBT Toán 12 - Kết nối tri thức Bài 2.14 trang 46 SBT toán 12 – Kết nối tri thức:...

Bài 2.14 trang 46 SBT toán 12 – Kết nối tri thức: Cho hình lập phương ABCD. A’B’C’D’ có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a: a) \overrightarrow AC \cdot \overrightarrow B’D’ \

Ý a: Đưa hai vectơ về một gốc, ta thấy hai vectơ vuông góc. Ý b: : Đưa hai vectơ về một gốc. Trả lời Giải bài 2.14 trang 46 sách bài tập toán 12 – Kết nối tri thức – Bài 6. Vecto trong không gian. Cho hình lập phương (ABCD.A’B’C’D’) có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a:…

Đề bài/câu hỏi:

Cho hình lập phương \(ABCD.A’B’C’D’\) có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a:

a) \(\overrightarrow {AC} \cdot \overrightarrow {B’D’} \)

b) \(\overrightarrow {BD} \cdot \overrightarrow {B’C’} \)

c) \(\overrightarrow {A’B’} \cdot \overrightarrow {AC’} \)

Hướng dẫn:

Ý a: Đưa hai vectơ về một gốc, ta thấy hai vectơ vuông góc.

Ý b: : Đưa hai vectơ về một gốc, từ đó xác định góc giữa chúng từ áp dụng công thức tích vô hướng để giải.

Ý c: Đưa hai vectơ về một gốc, áp dụng kiến thức về định lý ba đường vuông góc trong quá trình tìm cạnh và góc, cuối cùng tính toán, áp dụng công thức để tìm tích vô hướng.

Lời giải:

a) Ta có \(\overrightarrow {B’D’} = \overrightarrow {BD} \). Mặt khác \(BD \bot AC\)(do ABCD là hình vuông) hay \(\overrightarrow {BD} \bot \overrightarrow {AC} \),

suy ra \(\overrightarrow {AC} \cdot \overrightarrow {B’D’} = \overrightarrow {AC} \cdot \overrightarrow {BD} = 0\).

b) Ta có \(\overrightarrow {B’C’} = \overrightarrow {BC} \). Suy ra :

\(\overrightarrow {BD} \cdot \overrightarrow {B’C’} = \overrightarrow {BD} \cdot \overrightarrow {BC} = BD \cdot BC \cdot \cos \left( {\overrightarrow {BD} ,\overrightarrow {BC} } \right) = a\sqrt 2 \cdot a \cdot \cos \widehat {DBC} = {a^2}\sqrt 2 \cdot \cos {45^ \circ } = {a^2}\sqrt 2 \cdot \frac{{\sqrt 2 }}{2} = {a^2}\).

c) Ta có \(\overrightarrow {A’B’} = \overrightarrow {AB} \). Suy ra \(\overrightarrow {A’B’} \cdot \overrightarrow {AC’} = \overrightarrow {AB} \cdot \overrightarrow {AC’} = AB \cdot AC’ \cdot \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC’} } \right){\rm{ }}\left( 1 \right)\).

Ta sẽ tính cạnh \(AC’\) và xác định góc \(\left( {\overrightarrow {AB} ,\overrightarrow {AC’} } \right)\).

Ta có \(CB \bot AB\) suy ra \(C’B \bot AB\), do đó tam giác \(ABC’\) vuông tại \(B\).

Xét tam giác \(ABC’\) có \(AC’ = \sqrt {A{B^2} + B{{C’}^2}} = \sqrt {{a^2} + 2{a^2}} = a\sqrt 3 \).

Lại có \(\left( {\overrightarrow {AB} ,\overrightarrow {AC’} } \right) = \widehat {BAC’}\) suy ra \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC’} } \right) = \cos \widehat {BAC’} = \frac{{AB}}{{AC’}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }}\).

Thay \(AC’ = a\sqrt 3 \) và \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC’} } \right) = \frac{1}{{\sqrt 3 }}\) vào \(\left( 1 \right)\) ta được:

\(\overrightarrow {A’B’} \cdot \overrightarrow {AC’} = AB \cdot AC’ \cdot \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC’} } \right) = a \cdot a\sqrt 3 \cdot \frac{1}{{\sqrt 3 }} = {a^2}\).