Trang chủ Lớp 12 Toán lớp 12 SBT Toán 12 - Chân trời sáng tạo Bài 3 trang 17 SBT toán 12 – Chân trời sáng tạo:...

Bài 3 trang 17 SBT toán 12 – Chân trời sáng tạo: Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y = 2x + 1/x – 3 trên nửa khoảng 3;4 ]

• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\): Bước 1. Gợi ý giải Giải bài 3 trang 17 sách bài tập toán 12 – Chân trời sáng tạo – Bài 2. Giá trị lớn nhất – giá trị nhỏ nhất của hàm số. Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:…

Đề bài/câu hỏi:

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:

a) \(y = \frac{{2{\rm{x}} + 1}}{{{\rm{x}} – 3}}\) trên nửa khoảng \(\left( {3;4} \right]\);

b) \(y = \frac{{3{\rm{x}} + 7}}{{2{\rm{x}} – 5}}\) trên nửa khoảng \(\left[ { – 5;\frac{5}{2}} \right)\);

c) \(y = \frac{{3{\rm{x}} + 2}}{{x + 1}}\) trên đoạn \(\left[ {0;4} \right]\).

Hướng dẫn:

• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Bước 1. Tìm các điểm \({x_1},{x_2},…,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó \(f’\left( x \right)\) bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( a \right);f\left( {{x_1}} \right);f\left( {{x_2}} \right);…;f\left( {{x_n}} \right);f\left( b \right)\).

Bước 3. Gọi \(M\) là số lớn nhất và \(m\) là số nhỏ nhất trong các giá trị tìm được ở Bước 2. Khi đó: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\).

• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng hay nửa khoảng bằng đạo hàm:

‒ Lập bảng biến thiên của hàm số trên tập hợp đó.

‒ Căn cứ vào bảng biến thiên, kết luận giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số.

Lời giải:

a) Xét hàm số \(y = f\left( x \right) = \frac{{2{\rm{x}} + 1}}{{{\rm{x}} – 3}}\) trên nửa khoảng \(\left( {3;4} \right]\).

Ta có: \(f’\left( x \right) = – \frac{7}{{{{\left( {x – 3} \right)}^2}}} < 0,\forall x \in \left( {3;4} \right]\)

Bảng biến thiên của hàm số trên nửa khoảng \(\left( {3;4} \right]\):

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{\left( {3;4} \right]} f\left( x \right) = f\left( 4 \right) = 9\), hàm số không có giá trị lớn nhất trên nửa khoảng \(\left( {3;4} \right]\).

b) Xét hàm số \(y = f\left( x \right) = \frac{{3{\rm{x}} + 7}}{{2{\rm{x}} – 5}}\) trên nửa khoảng \(\left[ { – 5;\frac{5}{2}} \right)\).

Ta có: \(f’\left( x \right) = – \frac{{29}}{{{{\left( {2{\rm{x}} – 5} \right)}^2}}} < 0,\forall x \in \left[ { – 5;\frac{5}{2}} \right)\)

Bảng biến thiên của hàm số trên nửa khoảng \(\left[ { – 5;\frac{5}{2}} \right)\):

Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{\left[ { – 5;\frac{5}{2}} \right)} f\left( x \right) = f\left( {\frac{5}{2}} \right) = \frac{8}{{15}}\), hàm số không có giá trị nhỏ nhất trên nửa khoảng \(\left[ { – 5;\frac{5}{2}} \right)\).

c) Xét hàm số \(y = f\left( x \right) = \frac{{3{\rm{x}} + 2}}{{x + 1}}\) trên đoạn \(\left[ {0;4} \right]\).

Ta có: \(f’\left( x \right) = \frac{1}{{{{\left( {x + 1} \right)}^2}}} > 0,\forall x \in \left[ {0;4} \right]\)

\(f\left( 0 \right) = 2;f\left( 4 \right) = \frac{{14}}{5}\)

Vậy \(\mathop {\max }\limits_{\left[ {0;4} \right]} f\left( x \right) = f\left( 4 \right) = \frac{{14}}{5},\mathop {\min }\limits_{\left[ {0;4} \right]} f\left( x \right) = f\left( 0 \right) = 2\).