Trang chủ Lớp 12 Toán lớp 12 SBT Toán 12 - Cánh diều Bài 33 trang 18 SBT toán 12 – Cánh diều: Giá trị...

Bài 33 trang 18 SBT toán 12 – Cánh diều: Giá trị lớn nhất của hàm số y = x + √ 2 cos x trên đoạn [ 0;π /2 ] bằng: A. √ 2 . B. √ 3

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\): Bước 1. Vận dụng kiến thức giải Giải bài 33 trang 18 sách bài tập toán 12 – Cánh diều – Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Giá trị lớn nhất của hàm số (y = x + sqrt 2 cos x) trên đoạn (left[ {0;…

Đề bài/câu hỏi:

Giá trị lớn nhất của hàm số \(y = x + \sqrt 2 \cos x\) trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\) bằng:

A. \(\sqrt 2 \).

B. \(\sqrt 3 \).

C. \(\frac{\pi }{4} + 1\).

D. \(\frac{\pi }{2}\).

Hướng dẫn:

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Bước 1. Tìm các điểm \({x_1},{x_2},…,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),…,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).

Bước 3. So sánh các giá trị tìm được ở Bước 2.

Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).

Lời giải:

Ta có: \(y’ = 1 – \sqrt 2 \sin x\)

Khi đó, trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\), \(y’ = 0\) khi \(x = \frac{\pi }{4}\).

\(y\left( 0 \right) = \sqrt 2 ;y\left( {\frac{\pi }{4}} \right) = \frac{\pi }{4} + 1;y\left( {\frac{\pi }{2}} \right) = \frac{\pi }{2}\).

Vậy \(\mathop {\max }\limits_{\left[ {0;\frac{\pi }{2}} \right]} y = \frac{\pi }{4} + 1\) tại \(x = \frac{\pi }{4}\).

Chọn C.