Trang chủ Lớp 12 Toán lớp 12 SBT Toán 12 - Cánh diều Bài 19 trang 14 SBT toán 12 – Cánh diều: Tìm các...

Bài 19 trang 14 SBT toán 12 – Cánh diều: Tìm các khoảng đơn điệu của mỗi hàm số sau: a) y = – 1/3/x^3 + x^2 + 3x – 1

Các bước để tìm khoảng đồng biến, nghịch biến của hàm số \(f\left( x \right)\): Bước 1. Trả lời Giải bài 19 trang 14 sách bài tập toán 12 – Cánh diều – Bài 1. Tính đơn điệu của hàm số. Tìm các khoảng đơn điệu của mỗi hàm số sau:…

Đề bài/câu hỏi:

Tìm các khoảng đơn điệu của mỗi hàm số sau:

a) \(y = – \frac{1}{3}{x^3} + {x^2} + 3{\rm{x}} – 1\); b) \(y = {x^3} – 3{x^2} + 3{\rm{x}} – 1\);

c) \(y = {x^4} + {x^2} – 2\); d) \(y = – {x^4} + 2{{\rm{x}}^2} – 1\);

e) \(y = \frac{{2{\rm{x}} – 3}}{{{\rm{x}} – 4}}\); g) \(y = \frac{{{x^2} + x + 2}}{{x + 2}}\).

Hướng dẫn:

Các bước để tìm khoảng đồng biến, nghịch biến của hàm số \(f\left( x \right)\):

Bước 1. Tìm tập xác định của hàm số \(y = f\left( x \right)\).

Bước 2. Tính đạo hàm \(f’\left( x \right)\). Tìm các điểm \({x_i}\left( {i = 1,2,…,n} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 3. Sắp xếp các điểm \({x_i}\) theo thứ tự tăng dần và lập bảng biến thiên.

Bước 4. Căn cứ vào bảng biến thiên, nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Lời giải:

a) Hàm số có tập xác định là \(\mathbb{R}\).

Ta có: \({y^\prime } = – {{\rm{x}}^2} + 2{\rm{x}} + 3\)

\(y’ = 0\) khi \(x = – 1\) hoặc \(x = 3\).

Bảng biến thiên của hàm số:

Vậy hàm số đồng biến trên khoảng \(\left( { – 1;3} \right)\); nghịch biến trên mỗi khoảng \(\left( { – \infty ; – 1} \right)\) và \(\left( {3; + \infty } \right)\).

b) Hàm số có tập xác định là \(\mathbb{R}\).

Ta có: \({y^\prime } = 3{{\rm{x}}^2} – 6{\rm{x}} + 3\)

\(y’ = 0\) khi \(x = 1\).

Bảng biến thiên của hàm số:

Vậy hàm số đồng biến trên \(\mathbb{R}\).

c) Hàm số có tập xác định là \(\mathbb{R}\).

Ta có: \({y^\prime } = 4{{\rm{x}}^3} + 2{\rm{x}}\); \(y’ = 0\) khi \(x = 0\).

Bảng biến thiên của hàm số:

Vậy hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\); nghịch biến trên khoảng \(\left( { – \infty ;0} \right)\).

d) Hàm số có tập xác định là \(\mathbb{R}\).

Ta có: \({y^\prime } = – 4{{\rm{x}}^3} + 4{\rm{x}}\)

\(y’ = 0\) khi \(x = 0,x = – 1,x = 1\).

Bảng biến thiên của hàm số:

Vậy hàm số đồng biến trên các khoảng \(\left( { – \infty ; – 1} \right)\) và \(\left( {0;1} \right)\); nghịch biến trên các khoảng \(\left( { – 1;0} \right)\) và \(\left( {0; + \infty } \right)\).

e) Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 4 \right\}\).

Ta có: \({y^\prime } = – \frac{5}{{{{\left( {x – 4} \right)}^2}}} < 0,\forall x \ne 4\)

Bảng biến thiên của hàm số:

Vậy hàm số nghịch biến trên mỗi khoảng \(\left( { – \infty ;4} \right)\) và \(\left( {4; + \infty } \right)\).

f) Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ { – 2} \right\}\).

Ta có:

\(\begin{array}{l}{y^\prime } = \frac{{{{\left( {{x^2} + x + 2} \right)}^\prime }.\left( {x + 2} \right) – \left( {{x^2} + x + 2} \right).{{\left( {x + 2} \right)}^\prime }}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{\left( {2{\rm{x}} + 1} \right)\left( {x + 2} \right) – \left( {{x^2} + x + 2} \right)}}{{{{\left( {x + 2} \right)}^2}}}\\ & = \frac{{{x^2} + 4{\rm{x}}}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{x\left( {{\rm{x}} + 4} \right)}}{{{{\left( {x + 2} \right)}^2}}}\end{array}\)

\(y’ = 0\) khi \(x = 0,x = – 4\).

Bảng biến thiên của hàm số:

Vậy hàm số đồng biến trên mỗi khoảng \(\left( { – \infty ; – 4} \right)\) và \(\left( {0; + \infty } \right)\); nghịch biến trên mỗi khoảng \(\left( { – 4; – 2} \right)\) và \(\left( { – 2;0} \right)\).