Trả lời Hoạt động 8 Bài 32. Các quy tắc tính đạo hàm (trang 92, 93, 94) – SGK Toán 11 Kết nối tri thức. Tham khảo: Sử dụng công thức \(e = \mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{1}{x}} \right)^x}\.
Câu hỏi/Đề bài:
a) Sử dụng phép đổi biến \(t = \frac{1}{x},\) tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\frac{1}{x}}}.\)
b) Với \(y = {\left( {1 + x} \right)^{\frac{1}{x}}},\) tính ln y và tìm giới hạn của \(\mathop {\lim }\limits_{x \to 0} \ln y.\)
c) Đặt \(t = {e^x} – 1.\) Tính x theo t và tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} – 1}}{x}.\)
Hướng dẫn:
Sử dụng công thức \(e = \mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{1}{x}} \right)^x}\)
Lời giải:
a) Ta có \(t = \frac{1}{x},\) nên khi x tiến đến 0 thì t tiến đến dương vô cùng do đó
\(\mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\frac{1}{x}}} = \mathop {\lim }\limits_{t \to + \infty } {\left( {1 + \frac{1}{t}} \right)^t} = e\)
b) \(\ln y = \ln {\left( {1 + x} \right)^{\frac{1}{x}}} = \frac{1}{x}\ln \left( {1 + x} \right)\)
\(\mathop {\lim }\limits_{x \to 0} \ln y = \mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1\)
c) \(t = {e^x} – 1 \Leftrightarrow {e^x} = t + 1 \Leftrightarrow x = \ln \left( {t + 1} \right)\)
\(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} – 1}}{x} = \mathop {\lim }\limits_{t \to 0} \frac{t}{{\ln \left( {t + 1} \right)}} = 1\)