Trang chủ Lớp 11 Toán lớp 11 SGK Toán 11 - Kết nối tri thức Bài 7.7 trang 36 Toán 11 tập 2 – Kết nối tri...

Bài 7.7 trang 36 Toán 11 tập 2 – Kết nối tri thức: Cho hình chóp S. ABCD có đáy là hình chữ nhật và SA ⊥ (ABCD). Gọi M, N tương ứng là hình chiếu của A trên SB, SD

Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc cùng một mặt phẳng thì nó vuông góc với mặt phẳng đó. Hướng dẫn cách giải/trả lời Bài 7.7 trang 36 SGK Toán 11 tập 2 – Kết nối tri thức – Bài 23. Đường thẳng vuông góc với mặt phẳng. Cho hình chóp S.ABCD có đáy là hình chữ nhật và SA ( bot ) (ABCD). Gọi M,…

Đề bài/câu hỏi:

Cho hình chóp S.ABCD có đáy là hình chữ nhật và SA \( \bot \) (ABCD). Gọi M, N tương ứng là hình chiếu của A trên SB, SD. Chứng minh rằng:

AM \( \bot \) (SBC), AN \( \bot \) (SCD), SC \( \bot \) (AMN).

Hướng dẫn:

– Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc cùng một mặt phẳng thì nó vuông góc với mặt phẳng đó.

– Định nghĩa đường thẳng vuông góc mặt phẳng.

Lời giải:

\(\begin{array}{l}\left. \begin{array}{l} + )BC \bot AB\left( {hcn\,\,ABCD} \right)\\BC \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AB \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right);AM \subset \left( {SAB} \right) \Rightarrow BC \bot AM\\\left. \begin{array}{l} + )CD \bot AD\left( {hcn\,\,ABCD} \right)\\CD \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AD \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow CD \bot \left( {SAD} \right);AN \subset \left( {SAD} \right) \Rightarrow CD \bot AN\end{array}\)

\(\begin{array}{l}\left. \begin{array}{l} + )AM \bot SB\\AM \bot BC\\SB \cap BC = \left\{ B \right\}\end{array} \right\} \Rightarrow AM \bot \left( {SBC} \right);SC \subset \left( {SBC} \right) \Rightarrow SC \bot AM\\\left. \begin{array}{l} + )AN \bot SD\\AN \bot CD\\SD \cap CD = \left\{ D \right\}\end{array} \right\} \Rightarrow AN \bot \left( {SCD} \right);SC \subset \left( {SCD} \right) \Rightarrow SC \bot AN\\\left. \begin{array}{l} + )AM \bot SC\\AN \bot SC\\AM \cap AN = \left\{ A \right\}\end{array} \right\} \Rightarrow SC \bot \left( {AMN} \right)\end{array}\)