Dựa vào công thức dãy số tổng quát đã cho, thay n để tính. Vận dụng kiến thức giải Bài 2.1 trang 46 SGK Toán 11 tập 1 – Kết nối tri thức – Bài 5. Dãy số. Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (left( {{u_n}} right)) có số hạng…
Đề bài/câu hỏi:
Viết năm số hạng đầu và số hạng thứ 100 của các dãy số \(\left( {{u_n}} \right)\) có số hạng tổng quát cho bởi:
a) \({u_n} = 3n – 2\)
b) \({u_n} = {3.2^n}\)
c) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\)
Hướng dẫn:
Dựa vào công thức dãy số tổng quát đã cho, thay n để tính.
Lời giải:
a) \({u_n} = 3n – 2\)
\( \Rightarrow {u_1} = 3.1 – 2 = 1\)
\( \Rightarrow {u_2} = 3.2 – 2 = 4\)
\( \Rightarrow {u_3} = 3.3 – 2 = 7\)
\( \Rightarrow {u_4} = 3.4 – 2 = 10\)
\( \Rightarrow {u_5} = 3.5 – 2 = 13\)
\( \Rightarrow {u_{100}} = 3.100 – 2 = 298\)
b) \({u_n} = {3.2^n}\)
\( \Rightarrow {u_1} = {3.2^1} = 6\)
\( \Rightarrow {u_2} = {3.2^2} = 12\)
\( \Rightarrow {u_3} = {3.2^3} = 24\)
\( \Rightarrow {u_4} = {3.2^4} = 48\)
\( \Rightarrow {u_5} = {3.2^5} = 96\)
\( \Rightarrow {u_{100}} = {3.2^{100}}\)
c) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\)
\( \Rightarrow {u_1} = {\left( {1 + \frac{1}{1}} \right)^1} = 2\)
\( \Rightarrow {u_2} = {\left( {1 + \frac{1}{2}} \right)^2} = \frac{9}{4}\)
\( \Rightarrow {u_3} = {\left( {1 + \frac{1}{3}} \right)^3} = \frac{{64}}{{27}}\)
\( \Rightarrow {u_4} = {\left( {1 + \frac{1}{4}} \right)^4} = \frac{{625}}{{256}}\)
\( \Rightarrow {u_5} = {\left( {1 + \frac{1}{5}} \right)^5} = \frac{{7776}}{{3125}}\)
\( \Rightarrow {u_{100}} = {\left( {1 + \frac{1}{{100}}} \right)^{100}} = {\left( {\frac{{101}}{{100}}} \right)^{100}}\)