Giải chi tiết Vận dụng 1 Bài 3. Cấp số nhân (trang 57, 58) – SGK Toán 11 Chân trời sáng tạo. Hướng dẫn: Biến đổi, đưa \({u_{n + 1}} = {u_n}. q\), khi đó dãy số là cấp số nhân có công bội.
Câu hỏi/Đề bài:
Một quốc gia có dân số năm 2011 là \(P\) triệu người. Trong 10 năm tiếp theo, mỗi năm dân số tăng \(a\% \). Chứng minh rằng dân số các năm từ năm 2011 đến năm 2021 của quốc gia đó tạo thành cấp số nhân. Tìm công bội của cấp số nhân này.
Hướng dẫn:
Biến đổi, đưa \({u_{n + 1}} = {u_n}.q\), khi đó dãy số là cấp số nhân có công bội \(q\).
Lời giải:
Giả sử dân số của quốc gia đó từ năm 2011 đến năm 2021 là dãy số \(\left( {{u_n}} \right)\) với \({u_1} = P\).
Ta có:
\(\begin{array}{l}{u_1} = P\\{u_2} = {u_1} + {u_1}.\frac{a}{{100}} = {u_1}.\left( {1 + \frac{a}{{100}}} \right)\\{u_3} = {u_2} + {u_2}.\frac{a}{{100}} = {u_2}\left( {1 + \frac{a}{{100}}} \right)\\{u_4} = {u_3} + {u_3}.\frac{a}{{100}} = {u_3}\left( {1 + \frac{a}{{100}}} \right)\\ \vdots \\{u_{11}} = {u_{10}} + {u_{10}}.\frac{a}{{100}} = {u_{10}}\left( {1 + \frac{a}{{100}}} \right)\end{array}\)
Vậy dân số các năm từ năm 2011 đến năm 2021 của quốc gia đó tạo thành cấp số nhân với công bội \(q = 1 + \frac{a}{{100}}\).