Hướng dẫn giải Thực hành 4 Bài 2. Cấp số cộng (trang 54, 55) – SGK Toán 11 Chân trời sáng tạo. Tham khảo: Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số cộng có số hạng đầu \({u_1}\.
Câu hỏi/Đề bài:
a) Tính tổng 50 số tự nhiên chẵn đầu tiên.
b) Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_3} + {u_{28}} = 100\). Tính tổng 30 số hạng đầu tiên của cấp số cộng đó.
c) Cho cấp số cộng \(\left( {{v_n}} \right)\) có \({S_6} = 18\) và \({S_{10}} = 110\). Tính \({S_{20}}\).
Hướng dẫn:
Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) là: \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{n\left[ {2{u_1} + \left( {n – 1} \right)d} \right]}}{2}\).
Lời giải:
a) Ta có thể sắp xếp 50 số tự nhiên chẵn đầu tiên thành cấp số cộng có số hạng đầu \({u_1} = 0\) và công sai \(d = 2\).
\( \Rightarrow {S_{50}} = \frac{{50\left[ {2.0 + \left( {50 – 1} \right).2} \right]}}{2} = 2450\)
b) Giả sử cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\).
Ta có: \({u_3} + {u_{28}} = \left( {{u_1} + 2{\rm{d}}} \right) + \left( {{u_1} + 27{\rm{d}}} \right) = 2{u_1} + 29{\rm{d}} \Leftrightarrow 2{u_1} + 29{\rm{d}} = 100\)
\( \Rightarrow {S_{30}} = \frac{{30\left[ {2{u_1} + 29{\rm{d}}} \right]}}{2} = \frac{{30.100}}{2} = 1500\)
c) Giả sử cấp số cộng có số hạng đầu \({v_1}\) và công sai \(d\).
Ta có:
\(\begin{array}{l}{S_6} = 18 \Leftrightarrow \frac{{6\left[ {2{v_1} + 5{\rm{d}}} \right]}}{2} = 18 \Leftrightarrow 2{v_1} + 5{\rm{d}} = 6\left( 1 \right)\\{S_{10}} = 110 \Leftrightarrow \frac{{10\left[ {2{v_1} + 9{\rm{d}}} \right]}}{2} = 110 \Leftrightarrow 2{v_1} + 9{\rm{d}} = 22\left( 1 \right)\end{array}\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}2{v_1} + 5{\rm{d}} = 6\\2{v_1} + 9{\rm{d}} = 22\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{v_1} = – 7\\{\rm{d}} = 4\end{array} \right.\)
\( \Rightarrow {S_{20}} = \frac{{20\left[ {2{v_1} + 19{\rm{d}}} \right]}}{2} = \frac{{20\left[ {2.\left( { – 7} \right) + 19.4} \right]}}{2} = 620\)