Lời giải Thực hành 3 Bài 1. Giới hạn của dãy số (trang 66) – SGK Toán 11 Chân trời sáng tạo. Gợi ý: Bước 1: Chia cả tử và mẫu cho lũy thừa bậc cao nhất của tử và mẫu.
Câu hỏi/Đề bài:
Tìm các giới hạn sau:
a) \(\lim \frac{{2{n^2} + 3n}}{{{n^2} + 1}}\)
b) \(\lim \frac{{\sqrt {4{n^2} + 3} }}{n}\)
Hướng dẫn:
Bước 1: Chia cả tử và mẫu cho lũy thừa bậc cao nhất của tử và mẫu.
Bước 2: Tính các giới hạn của tử và mẫu rồi áp dụng quy tắc tính giới hạn của thương để tính giới hạn.
Lời giải:
a) \(\lim \frac{{2{n^2} + 3n}}{{{n^2} + 1}} = \lim \frac{{{n^2}\left( {2 + \frac{{3n}}{{{n^2}}}} \right)}}{{{n^2}\left( {1 + \frac{1}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{3}{n}}}{{1 + \frac{1}{{{n^2}}}}} = 2\)
b) \(\lim \frac{{\sqrt {4{n^2} + 3} }}{n} = \lim \frac{{\sqrt {{n^2}\left( {4 + \frac{3}{{{n^2}}}} \right)} }}{n} = \lim \frac{{n\sqrt {4 + \frac{3}{{{n^2}}}} }}{n} = \lim \sqrt {4 + \frac{3}{{{n^2}}}} = 2\)