Trang chủ Lớp 11 Toán lớp 11 SGK Toán 11 - Chân trời sáng tạo Bài 9 trang 144 Toán 11 tập 1 – Chân trời sáng...

Bài 9 trang 144 Toán 11 tập 1 – Chân trời sáng tạo: Bảng sau thống kê số ca nhiễm mới SARS-CoV-2 mỗi ngày trong tháng 12/2021 tại Việt Nam. (Nguồn: worldometers

Sắp xếp dãy số liệu theo thứ tự không giảm, tìm số trung bình và tứ phân vị. b) Đếm và lập bảng. Hướng dẫn cách giải/trả lời Bài 9 trang 144 SGK Toán 11 tập 1 – Chân trời sáng tạo – Bài tập cuối chương 5. Bảng sau thống kê số ca nhiễm mới SARS-CoV-2 mỗi ngày trong tháng 12/2021 tại Việt Nam….

Đề bài/câu hỏi:

Bảng sau thống kê số ca nhiễm mới SARS-CoV-2 mỗi ngày trong tháng 12/2021 tại Việt Nam.

(Nguồn: worldometers.info)

a) Xác định số trung bình và tứ phân vị của mẫu số liệu trên. Mẫu số liệu có bao nhiêu giá trị ngoại lệ?

b) Hoàn thiện bảng tần số ghép nhóm theo mẫu sau:

c) Hãy ước lượng số trung bình và tứ phân vị của mẫu số liệu ở bảng tần số ghép nhóm trên.

Hướng dẫn:

a) Sắp xếp dãy số liệu theo thứ tự không giảm, tìm số trung bình và tứ phân vị.

b) Đếm và lập bảng.

c) Sử dụng công thức tính số trung bình và tứ phân vị của mẫu số liệu ở bảng tần số ghép nhóm.

Lời giải:

a) Sắp xếp lại dãy số liệu theo thứ tự không giảm:

Số trung bình của số liệu là: \(\bar x \approx 15821,87\)

Tứ phân vị thứ nhất là: \({x_8} = 15139\)

Tứ phân vị thứ hai là: \({x_{16}} = 15685\)

Tứ phân vị thứ ba là: \({x_{24}} = 16586\)

Mẫu số liệu có 1 giá trị ngoại lệ.

b)

c) Ta có:

• Số ca nhiễm mới SARS-CoV-2 trung bình trong tháng 12/2021 tại Việt Nam là:

\(\bar x = \frac{{14.14,74 + 14.16,25 + 2.17,75 + 0.19,25 + 1.20,75}}{{31}} \approx 15,81\)

• Gọi \({x_1};{x_2};…;{x_{31}}\) số ca nhiễm mới SARS-CoV-2 mỗi ngày trong tháng 12/2021 tại Việt Nam được xếp theo thứ tự không giảm.

Ta có: \({x_1},…,{x_{14}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}{\left[ {14;15,5} \right)}\end{array}}\end{array}}\end{array};{x_{15}},…,{x_{28}} \in \begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}{\left[ {15,5;17} \right)}\end{array}}\end{array};{x_{29}},{x_{30}} \in \begin{array}{*{20}{c}}{\left[ {17;18,5} \right)}\end{array};{x_{31}} \in \begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}{\left[ {20;21,5} \right)}\end{array}}\end{array}\)

Tứ phân vị thứ hai của dãy số liệu là: \({x_{16}}\)

Ta có: \(n = 31;{n_m} = 14;C = 14;{u_m} = 15,5;{u_{m + 1}} = 17\)

Do \({x_{16}} \in \begin{array}{*{20}{c}}{\left[ {15,5;17} \right)}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} – C}}{{{n_m}}}.\left( {{u_{m + 1}} – {u_m}} \right) = 15,5 + \frac{{\frac{{31}}{2} – 14}}{{14}}.\left( {17 – 15,5} \right) \approx 15,66\)

Tứ phân vị thứ nhất của dãy số liệu là: \({x_8}\).

Ta có: \(n = 31;{n_m} = 14;C = 0;{u_m} = 14;{u_{m + 1}} = 15,5\)

Do \({x_8} \in \begin{array}{*{20}{c}}{\left[ {14;15,5} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} – C}}{{{n_m}}}.\left( {{u_{m + 1}} – {u_m}} \right) = 14 + \frac{{\frac{{31}}{4} – 0}}{{14}}.\left( {15,5 – 14} \right) \approx 14,83\)

Tứ phân vị thứ ba của dãy số liệu là: \({x_{24}}\).

Ta có: \(n = 31;{n_j} = 14;C = 14;{u_j} = 15,5;{u_{j + 1}} = 17\)

Do \({x_{24}} \in \begin{array}{*{20}{c}}{\left[ {15,5;17} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} – C}}{{{n_j}}}.\left( {{u_{j + 1}} – {u_j}} \right) = 15,5 + \frac{{\frac{{3.31}}{4} – 14}}{{14}}.\left( {17 – 15,5} \right) \approx 16,49\)