Trang chủ Lớp 11 Toán lớp 11 SGK Toán 11 - Chân trời sáng tạo Bài 6 trang 82 Toán 11 tập 2 – Chân trời sáng...

Bài 6 trang 82 Toán 11 tập 2 – Chân trời sáng tạo: Cho hình hộp đứng ABCD. A’B’C’D’ có cạnh bên AA’ = 2a và đáy ABCD là hình thoi có AB = a và AC = a√3

‒ Cách tính khoảng cách giữa hai đường thẳng chéo nhau: Cách 1: Dựng đường vuông góc chung. Cách 2. Giải và trình bày phương pháp giải Bài 6 trang 82 SGK Toán 11 tập 2 – Chân trời sáng tạo – Bài 4. Khoảng cách trong không gian. Cho hình hộp đứng (ABCD.A’B’C’D’) có cạnh bên (AA’ = 2a) và đáy (ABCD) là hình thoi có (AB =…

Đề bài/câu hỏi:

Cho hình hộp đứng \(ABCD.A’B’C’D’\) có cạnh bên \(AA’ = 2a\) và đáy \(ABCD\) là hình thoi có \(AB = a\) và \(AC = a\sqrt 3 \).

a) Tính khoảng cách giữa hai đường thẳng \(B{\rm{D}}\) và \(AA’\).

b) Tính thể tích của khối hộp.

Hướng dẫn:

‒ Cách tính khoảng cách giữa hai đường thẳng chéo nhau:

Cách 1: Dựng đường vuông góc chung.

Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.

‒ Công thức tính thể tích khối lăng trụ: \(V = Sh\).

Lời giải:

a) Gọi \(O = AC \cap B{\rm{D}}\)

\(ABCD\) là hình thoi \( \Rightarrow AC \bot B{\rm{D}} \Rightarrow AO \bot B{\rm{D}}\)

\(AA’ \bot \left( {ABCD} \right) \Rightarrow AA’ \bot AO\)

\( \Rightarrow d\left( {B{\rm{D}},AA’} \right) = AO = \frac{1}{2}AC = \frac{{a\sqrt 3 }}{2}\)

b) Tam giác \(OAB\) vuông tại \(O\)

\(\begin{array}{l} \Rightarrow BO = \sqrt {A{B^2} – A{O^2}} = \frac{a}{2} \Rightarrow B{\rm{D}} = 2BO = a\\{S_{ABC{\rm{D}}}} = \frac{1}{2}AC.B{\rm{D}} = \frac{{{a^2}\sqrt 3 }}{2}\\{V_{ABC.A’B’C’}} = {S_{ABC{\rm{D}}}}.AA’ = \frac{{3{a^3}}}{4}\end{array}\)