Trang chủ Lớp 11 Toán lớp 11 SGK Toán 11 - Chân trời sáng tạo Bài 4 trang 120 Toán 11 tập 1 – Chân trời sáng...

Bài 4 trang 120 Toán 11 tập 1 – Chân trời sáng tạo: Cho hình hộp ABCD. A’B’C’D’. Gọi G_1 và G_2 lần lượt là trọng tâm của hai tam giác BDA’ và B’D’C. Chứng minh G_1 và G_2 chia đoạn AC

‒ Sử dụng tính chất hình hộp. ‒ Sử dụng tính chất trọng tâm của tam giác. Hướng dẫn trả lời Bài 4 trang 120 SGK Toán 11 tập 1 – Chân trời sáng tạo – Bài 4. Hai mặt phẳng song song. Cho hình hộp \(ABCD.A’B’C’D’\). Gọi \({G_1}\) và \({G_2}\) lần lượt là trọng tâm của hai tam giác \(BDA’\) và \(B’D’C\)….

Đề bài/câu hỏi:

Cho hình hộp \(ABCD.A’B’C’D’\). Gọi \({G_1}\) và \({G_2}\) lần lượt là trọng tâm của hai tam giác \(BDA’\) và \(B’D’C\). Chứng minh \({G_1}\) và \({G_2}\) chia đoạn \(AC\) thành ba phần bằng nhau.

Hướng dẫn:

‒ Sử dụng tính chất hình hộp.

‒ Sử dụng tính chất trọng tâm của tam giác.

Lời giải:

Gọi \(O = AC \cap B{\rm{D}},O’ = A’C’ \cap B'{\rm{D}}’,I = AC’ \cap A’C\)

Vì \(AA’\parallel CC’,AA’ = CC’\) theo tính chất hình hộp nên \(AA’C’C\) là hình bình hành \( \Rightarrow I\) là trung điểm của \(AC’\) và \(A’C\).

Ta có: \({G_1}\) là trọng tâm của tam giác \(BDA’ \Rightarrow \frac{{A'{G_1}}}{{A’O}} = \frac{2}{3}\)

Tam giác \(AA’C\) có \(\frac{{A'{G_1}}}{{A’O}} = \frac{2}{3}\) nên \({G_1}\) là trọng tâm của tam giác \(AA’C\)

Mà \(I\) là trung điểm của \(A’C\) nên \(\frac{{A{G_1}}}{{AI}} = \frac{2}{3} \Rightarrow A{G_1} = \frac{2}{3}AI\)

Mà \(AI = \frac{1}{2}AC’\)

\( \Rightarrow A{G_1} = \frac{1}{3}AC’\left( 1 \right)\)

Ta có: \({G_2}\) là trọng tâm của tam giác \(B’D’C \Rightarrow \frac{{C{G_2}}}{{CO’}} = \frac{2}{3}\)

Tam giác \(ACC’\) có \(\frac{{C{G_2}}}{{CO’}} = \frac{2}{3}\) nên \({G_2}\) là trọng tâm của tam giác \(ACC’\)

Mà \(I\) là trung điểm của \(AC’\) nên \(\frac{{C'{G_2}}}{{C’I}} = \frac{2}{3} \Rightarrow C'{G_2} = \frac{2}{3}C’I\)

Mà \(C’I = \frac{1}{2}AC’\)

\( \Rightarrow C'{G_2} = \frac{1}{3}AC’\left( 2 \right)\)

Từ (1) và (2) suy ra \({G_1}\) và \({G_2}\) chia đoạn \(AC\) thành ba phần bằng nhau.