Cách tính khoảng cách giữa hai đường thẳng chéo nhau: Cách 1: Dựng đường vuông góc chung. Cách 2. Lời giải Bài 10 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo – Bài tập cuối Chương 8. Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA \bot \left( {ABCD} \right)\) và \(SA = a\)….
Đề bài/câu hỏi:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA \bot \left( {ABCD} \right)\) và \(SA = a\). Gọi \(M,N,P\) lần lượt là trung điểm của \(SB,SC\) và \(SD\). Tính khoảng cách giữa \(AM\) và \(NP\).
Hướng dẫn:
Cách tính khoảng cách giữa hai đường thẳng chéo nhau:
Cách 1: Dựng đường vuông góc chung.
Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.
Lời giải:
\(M\) là trung điểm của \(SB\)
\(N\) là trung điểm của \(SC\)
\( \Rightarrow MN\) là đường trung bình của \(\Delta SBC\)
\(\left. \begin{array}{l} \Rightarrow MN\parallel BC\\BC \bot C{\rm{D}}\end{array} \right\} \Rightarrow MN \bot C{\rm{D}}\)
Mà \(C{\rm{D}}\parallel NP\) \( \Rightarrow MN \bot NP\) (1)
\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\\AB \bot BC\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\)
Mà \(MN\parallel BC\)\( \Rightarrow MN \bot \left( {SAB} \right) \Rightarrow MN \bot AM\)(2)
Từ (1) và (2) \( \Rightarrow d\left( {AM,NP} \right) = MN = \frac{1}{2}BC = \frac{a}{2}\).