Sử dụng định lí 1: Nếu đường thẳng \(d\) vuông góc với hai đường thẳng cắt nhau \(a\) và \(b\. Giải và trình bày phương pháp giải Bài 1 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo – Bài tập cuối Chương 8. Cho hình chóp (S.ABCD) có đáy (ABCD) là hình vuông, (SA) vuông góc với mặt đáy….
Đề bài/câu hỏi:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(SA\) vuông góc với mặt đáy. Đường thẳng \(C{\rm{D}}\) vuông góc với mặt phẳng nào sau đây?
A. \(\left( {SAD} \right)\).
B. \(\left( {SAC} \right)\).
C. \(\left( {SAB} \right)\).
D. \(\left( {SBD} \right)\).
Hướng dẫn:
Sử dụng định lí 1: Nếu đường thẳng \(d\) vuông góc với hai đường thẳng cắt nhau \(a\) và \(b\) cùng nằm trong mặt phẳng \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).
Lời giải:
Ta có: \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot C{\rm{D}}\).
\(ABCD\) là hình vuông \( \Rightarrow C{\rm{D}} \bot A{\rm{D}}\)
\( \Rightarrow C{\rm{D}} \bot \left( {SA{\rm{D}}} \right)\)
Chọn A.