Giải Luyện tập – Vận dụng 2 Bài 1. Dãy số (trang 43, 44) – SGK Toán 11 Cánh diều. Tham khảo: Thay n để tìm số hạng và số hạng tổng quát của dãy số.
Câu hỏi/Đề bài:
Cho dãy số \((u_n) = n^2\).
a) Viết năm số hạng đầu và số hạng tổng quát của dãy số \((u_n)\).
b) Viết dạng khai triển của dãy số \((u_n)\).
Hướng dẫn:
Thay n để tìm số hạng và số hạng tổng quát của dãy số.
Viết dạng khai triển dựa vào các số hạng vừa tìm được
Lời giải:
a) Năm số hạng đầu của dãy số là: \(u_1 = 1^2 = 1; u_2 = 2^2 = 4; u_3 = 3^2 = 9; u_4 = 4^2 = 16, u_5 = 5^2 = 25\).
Số hạng tổng quát của dãy số un là \(u_n = n^2\) với n ∈ ℕ.
b) Dạng khai triển của dãy số \(u_1 = 1; u_2 = 4; u_3 = 9; u_4 = 16, u_5 = 25, …, u_n = n^2, …\)