Trang chủ Lớp 11 Toán lớp 11 SGK Toán 11 - Cánh diều Bài 2 trang 115 Toán 11 tập 2 – Cánh Diều: Cho...

Bài 2 trang 115 Toán 11 tập 2 – Cánh Diều: Cho hình chóp đều S. ABCD có các cạnh bên và các cạnh đáy đều bằng a. a) Chứng minh rằng các tam giác ASC và BSD

Chứng minh tam giác có 2 cạnh bằng nhau và có một góc vuông. b) Cách chứng minh đường thẳng vuông góc với mặt phẳng. Lời giải Bài 2 trang 115 SGK Toán 11 tập 2 – Cánh Diều – Bài 6. Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối. Cho hình chóp đều \(S.ABCD\) có các cạnh bên và các cạnh đáy đều bằng \(a\)….

Đề bài/câu hỏi:

Cho hình chóp đều \(S.ABCD\) có các cạnh bên và các cạnh đáy đều bằng \(a\).

a) Chứng minh rằng các tam giác \(ASC\) và \(BSD\) là tam giác vuông cân.

b) Gọi \(O\) là giao điểm của \(AC\) và \(B{\rm{D}}\), chứng minh rằng đường thẳng \(SO\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

c) Chứng minh rằng góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \({45^ \circ }\).

Hướng dẫn:

a) Chứng minh tam giác có 2 cạnh bằng nhau và có một góc vuông.

b) Cách chứng minh đường thẳng vuông góc với mặt phẳng: chứng minh đường thẳng đó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.

c) Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

Lời giải:

a) \(ABCD\) là hình vuông \( \Rightarrow AC = B{\rm{D}} = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \)

Xét \(\Delta ASC\) có: \(S{A^2} + S{C^2} = 2{a^2} = A{C^2},SA = SC\)

Vậy tam giác \(ASC\) là tam giác vuông cân tại \(S\).

Xét \(\Delta BSD\) có: \(S{B^2} + S{D^2} = 2{a^2} = B{{\rm{D}}^2},SB = SD\)

Vậy tam giác \(BSD\) là tam giác vuông cân tại \(S\).

b) \(\Delta ASC\) vuông cân tại \(S\) \( \Rightarrow SO \bot AC\)

\(\Delta BSD\) vuông cân tại \(S\) \( \Rightarrow SO \bot B{\rm{D}}\)

\( \Rightarrow SO \bot \left( {ABCD} \right)\)

c) \(SO \bot \left( {ABCD} \right) \Rightarrow \left( {SA,\left( {ABCD} \right)} \right) = \left( {SA,OA} \right) = \widehat {SAO}\)

\(\Delta ASC\) vuông cân tại \(S\) \( \Rightarrow \widehat {SAO} = {45^ \circ }\)

Vậy \(\left( {SA,\left( {ABCD} \right)} \right) = {45^ \circ }\).