Dựa vào tập xác định của hàm số đã học để xác định tập hàm định của từng hàm. Trả lời Bài 17 trang 57 SGK Toán 11 tập 2 – Cánh Diều – Bài tập cuối Chương 6. Tìm tập xác định của mỗi hàm số sau:…
Đề bài/câu hỏi:
Tìm tập xác định của mỗi hàm số sau:
a) \(y = \frac{5}{{{2^x} – 3}}\)
b) \(y = \sqrt {25 – {5^x}} \)
c) \(y = \frac{x}{{1 – \ln x}}\)
d) \(y = \sqrt {1 – {{\log }_3}x} \)
Hướng dẫn:
Dựa vào tập xác định của hàm số đã học để xác định tập hàm định của từng hàm
Lời giải:
a) Hàm số \(y = \frac{5}{{{2^x} – 3}}\) xác định \( \Leftrightarrow {2^x} – 3 \ne 0 \Leftrightarrow {2^x} \ne 3 \Leftrightarrow x \ne {\log _2}3\)
b) Hàm số \(y = \sqrt {25 – {5^x}} \) xác định \( \Leftrightarrow 25 – {5^x} \ge 0 \Leftrightarrow {5^x} \le 25 \Leftrightarrow x \le 2\)
c) Hàm số \(y = \frac{x}{{1 – \ln x}}\) xác định \( \Leftrightarrow \left\{ \begin{array}{l}1 – \ln x \ne 0\\x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\ln x \ne 1\\x > 0\end{array} \right. \ne \left\{ \begin{array}{l}x \ne e\\x > 0\end{array} \right.\)
d) Hàm số \(y = \sqrt {1 – {{\log }_3}x} \) xác định:
\( \Leftrightarrow \left\{ \begin{array}{l}1 – {\log _3}x \ge 0\\x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\log _3}x \le 1\\x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 3\\x > 0\end{array} \right. \Leftrightarrow 0 < x \le 3\)