Định nghĩa hàm số liên tục tại một điểm. Cho hàm \(y = f(x)\) xác định trên khoảng \(\left( {a;b} \right)\), \({x_0} \in \left( {a. Hướng dẫn trả lời Bài 1 trang 79 SGK Toán 11 tập 1 – Cánh Diều – Bài tập cuối chương 3. Cho hàm số \(y = f(x)\) xác định trên khoảng \((a;b)\) và \({x_0} \in (a;b)\)….
Đề bài/câu hỏi:
Cho hàm số \(y = f(x)\) xác định trên khoảng \((a;b)\) và \({x_0} \in (a;b)\). Điều kiện cần và đủ để hàm số \(y = f(x)\) liên tục tại \({x_0}\) là:
A. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = f\left( {{x_0}} \right)\).
B. \(\mathop {\lim }\limits_{x \to x_0^ – } f(x) = f\left( {{x_0}} \right)\).
C. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = \mathop {\lim }\limits_{x \to x_0^ – } f(x)\).
D. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = \mathop {\lim }\limits_{x \to x_0^ – } f(x) = f\left( {{x_0}} \right)\).
Hướng dẫn:
Định nghĩa hàm số liên tục tại một điểm.
Cho hàm \(y = f(x)\) xác định trên khoảng \(\left( {a;b} \right)\), \({x_0} \in \left( {a;b} \right)\). Hàm số \(f(x)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = f({x_0})\).
\(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}^ – } f(x) = \mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\)
Lời giải:
Theo lí thuyết ta chọn đáp án D.