Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Kết nối tri thức Bài 7.15 trang 30 SBT toán 11 – Kết nối tri thức:...

Bài 7.15 trang 30 SBT toán 11 – Kết nối tri thức: Cho hình chóp S. ABC có SA ⊥ ABC , đáy là tam giác ABC vuông cân tại B, biết AB = a, SA = a√6

Kẻ \(BM \bot AC\) tại \(M\), \(BM \bot \left( {SAC} \right)\) suy ra \(SM\) là hình chiếu vuông góc của \(SB\. Lời giải Giải bài 7.15 trang 30 sách bài tập toán 11 – Kết nối tri thức với cuộc sống – Bài 24. Phép chiếu vuông góc với mặt phẳng. Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), đáy là tam giác \(ABC\) vuông cân tại \(B\),…

Đề bài/câu hỏi:

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), đáy là tam giác \(ABC\) vuông cân tại \(B\), biết \(AB = a\), \(SA = a\sqrt 6 \).

a) Tính tang góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {SAC} \right)\).

b) Tính sin góc giữa đường thẳng \(AC\) và mặt phẳng \(\left( {SBC} \right)\).

Hướng dẫn:

a) Kẻ \(BM \bot AC\) tại \(M\),\(BM \bot \left( {SAC} \right)\) suy ra \(SM\) là hình chiếu vuông góc của \(SB\) trên mặt phẳng \(\left( {SAC} \right)\)

Góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {SAC} \right)\) bằng góc giữa hai đường thẳng \(SB\) và \(SM\),

Ta tính góc\(BSM\).

b) Kẻ \(AH \bot SB\) tại \(H\), chứng minh \(AH \bot \left( {SBC} \right)\).

Từ đó suy ra hình chiếu của \(AC\) trên \(\left( {SBC} \right)\),

Suy ra góc giữa đường thẳng \(AC\) và \(\left( {SBC} \right)\) bằng góc giữa hai đường thẳng \(AC\) và hình chiếu \(HC\)

Tính góc hai đường thẳng \(AC\) và hình chiếu của nó

Áp dụng tỉ số lượng giác cho tam giác vuông để tính góc

Lời giải:

a) Gọi \(M\) là trung điểm đoạn \(AC\) thì \(BM \bot AC \Rightarrow BM \bot \left( {SAC} \right) \Rightarrow SM\) là hình chiếu vuông góc của \(SB\) lên mặt phẳng \(\left( {SAC} \right)\).

Khi đó \(\left( {\widehat {SB,\left( {SAC} \right)}} \right) = \left( {\widehat {SB,SM}} \right) = \widehat {BSM}\).

Tam giác \(SBM\) vuông tại \(M\) có \(BM = AM = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\) và \(SM = \sqrt {S{A^2} + A{M^2}} = \frac{{a\sqrt {26} }}{2}\)

Do đó \(\tan \widehat {BSM} = \frac{{BM}}{{SM}} = \frac{{\sqrt {13} }}{{13}}\).

b) Trong mp\(\left( {SAB} \right)\), kẻ \(AH \bot SB\) thì \(AH \bot \left( {SBC} \right)\) (vì \(AH \bot SB,AH \bot BC\)).

Khi đó \(HC\) là hình chiếu vuông góc của \(AC\) lên mp\(\left( {SBC} \right)\).

Suy ra \(\left( {\widehat {AC,\left( {SBC} \right)}} \right) = \left( {\widehat {AC,HC}} \right) = \widehat {ACH}\).

Mặt khác tam giác \(AHC\) vuông tại \(H\) có \(AC = a\sqrt 2 \) và \(AH = \frac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{a\sqrt {42} }}{7}\).

Do đó \(\sin \widehat {ACH} = \frac{{AH}}{{AC}} = \frac{{\sqrt {21} }}{7}\).