Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại số M sao cho \({u_n} \le M\. Lời giải Giải bài 2.3 trang 33 sách bài tập toán 11 – Kết nối tri thức với cuộc sống – Bài 5. Dãy số. Xét tính bị chặn của các dãy số sau:…
Đề bài/câu hỏi:
Xét tính bị chặn của các dãy số sau:
a) \({u_n} = \frac{n}{{2n + 1}};\)
b) \({u_n} = {n^2} + n – 1;\)
c) \({u_n} = – {n^2} + 1\).
Hướng dẫn:
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại số M sao cho \({u_n} \le M\) với mọi \(n \in \mathbb{N}*\).
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn dưới nếu tồn tại số m sao cho \({u_n} \ge m\) với mọi \(n \in \mathbb{N}*\).
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại m, M sao cho: \(m \le {u_n} \le M\) với mọi \(n \in \mathbb{N}*\).
Lời giải:
a) Ta có: \({u_n} = \frac{n}{{2n + 1}} = \frac{{\frac{1}{2}\left( {2n + 1} \right) – \frac{1}{2}}}{{2n + 1}} = \frac{1}{2} – \frac{{\frac{1}{2}}}{{2n + 1}} = \frac{1}{2} – \frac{1}{{2\left( {2n + 1} \right)}}\)
Suy ra \(\frac{1}{3} \le {u_n} \le \frac{1}{2}\) với mọi \(n \ge 1\). Do đó, \(\left( {{u_n}} \right)\) là dãy số bị chặn
b) Ta có: \(n – 1 \ge 0\) với mọi \(n \ge 1\). Do đó, \({u_n} = {n^2} + n – 1 \ge 1\) với mọi \(n \ge 1\). Do đó, dãy số \(\left( {{u_n}} \right)\) bị chặn dưới bởi 1 với mọi \(n \ge 1\).
c) Ta có: \({u_n} = – {n^2} + 1 \le 1\) với mọi \(n \ge 1\). Do đó, \(\left( {{u_n}} \right)\) là dãy số bị chặn trên bởi 1 với mọi \(n \ge 1\).