Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Kết nối tri thức Bài 1.14 trang 11 SBT toán 11 – Kết nối tri thức:...

Bài 1.14 trang 11 SBT toán 11 – Kết nối tri thức: Chứng minh rằng a) cos a – sin a = √2 cos a + π /4

Áp dụng công thức cộng: \(\sin (a + b) = \sin a\cos b + \cos a\sin b\). Phân tích, đưa ra lời giải Giải bài 1.14 trang 11 sách bài tập toán 11 – Kết nối tri thức với cuộc sống – Bài 2. Công thức lượng giác. Chứng minh rằng…

Đề bài/câu hỏi:

Chứng minh rằng

a) \(\cos a – \sin a = \sqrt 2 \cos \left( {a + \frac{\pi }{4}} \right)\);

b) \(\sin a + \sqrt 3 \cos a = 2\sin \left( {a + \frac{\pi }{3}} \right)\).

Hướng dẫn:

Áp dụng công thức cộng:

\(\sin (a + b) = \sin a\cos b + \cos a\sin b\).

\(\cos (a + b) = \cos a\cos b – \sin a\sin b\).

Lời giải:

a) Ta có:

\(\begin{array}{l}\sqrt 2 \cos \left( {a + \frac{\pi }{4}} \right) = \sqrt 2 \left( {\cos a\cos \frac{\pi }{4} – \sin a\sin \frac{\pi }{4}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sqrt 2 \left( {\cos a.\frac{{\sqrt 2 }}{2} – \sin a.\frac{{\sqrt 2 }}{2}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sqrt 2 .\cos a.\frac{{\sqrt 2 }}{2} – \sqrt 2 .\sin a.\frac{{\sqrt 2 }}{2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \cos a – \sin a.\end{array}\)

b) Ta có:

\(\begin{array}{l}{\rm{VT}} = 2\sin \left( {a + \frac{\pi }{3}} \right)\,\\\,\,\,\,\,\,\,\,\, = 2\left( {\sin a\cos \frac{\pi }{3} + \cos a\sin \frac{\pi }{3}} \right)\\\,\,\,\,\,\,\,\,\, = 2\left( {\sin a.\frac{1}{2} + \cos a.\frac{{\sqrt 3 }}{2}} \right)\\\,\,\,\,\,\,\,\,\, = 2\sin a.\frac{1}{2} + 2\cos a.\frac{{\sqrt 3 }}{2}\\\,\,\,\,\,\,\,\,\, = \sin a + \sqrt 3 \cos a.\end{array}\)