Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Chân trời sáng tạo Câu 9 Bài tập cuối chương 1 (trang 32, 33) SBT Toán...

Câu 9 Bài tập cuối chương 1 (trang 32, 33) SBT Toán 11: Số nghiệm của phương trình sin 2x + π /3 = 1/2 trên đoạn [ 0;8π ] là A. 14. B. 15. C. 16. D. 17

Trả lời Câu 9 Bài tập cuối chương 1 (trang 32, 33) – SBT Toán 11 Chân trời sáng tạo. Tham khảo: Sử dụng kiến thức về phương trình lượng giác cơ bản để giải phương trình.

Câu hỏi/Đề bài:

Số nghiệm của phương trình \(\sin \left( {2x + \frac{\pi }{3}} \right) = \frac{1}{2}\) trên đoạn \(\left[ {0;8\pi } \right]\) là

A. 14.

B. 15.

C. 16.

D. 17.

Hướng dẫn:

Sử dụng kiến thức về phương trình lượng giác cơ bản để giải phương trình: Phương trình \(\sin x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = \pi – \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ { – \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha = m\).

Đặc biệt: \(\sin u = \sin v \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = \pi – v + k2\pi \left( {k \in \mathbb{Z}} \right)\)

Lời giải:

\(\sin \left( {2x + \frac{\pi }{3}} \right) = \frac{1}{2} \Leftrightarrow \sin \left( {2x + \frac{\pi }{3}} \right) = \sin \frac{\pi }{6}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\2x + \frac{\pi }{3} = \pi – \frac{\pi }{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ – \pi }}{{12}} + k\pi \\x = \frac{\pi }{4} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

TH1: Vì \(x \in \left[ {0;8\pi } \right] \Rightarrow 0 \le \frac{{ – \pi }}{{12}} + k\pi \le 8\pi \Leftrightarrow \frac{1}{{12}} \le k \le \frac{{97}}{{12}}\)

Mà k là số nguyên nên \(k \in \left\{ {1;2;3;4;5;6;7;8} \right\}\)

Do đó, \(x \in \left\{ {\frac{{11\pi }}{{12}};\frac{{23\pi }}{{12}};\frac{{35\pi }}{{12}};\frac{{47\pi }}{{12}};\frac{{59\pi }}{{12}};\frac{{71\pi }}{{12}};\frac{{83\pi }}{{12}};\frac{{95\pi }}{{12}}} \right\}\)

TH2: Vì \(x \in \left[ {0;8\pi } \right] \Rightarrow 0 \le \frac{\pi }{4} + k\pi \le 8\pi \Leftrightarrow \frac{{ – 1}}{4} \le k \le \frac{{31}}{4}\)

Mà k là số nguyên nên \(k \in \left\{ {0;1;2;3;4;5;6;7} \right\}\)

Do đó, \(x \in \left\{ {\frac{\pi }{4};\frac{{5\pi }}{4};\frac{{9\pi }}{4};\frac{{13\pi }}{4};\frac{{17\pi }}{4};\frac{{21\pi }}{4};\frac{{25\pi }}{4};\frac{{29\pi }}{4}} \right\}\)

Vậy có tất cả 16 nghiệm của phương trình \(\sin \left( {2x + \frac{\pi }{3}} \right) = \frac{1}{2}\) trên đoạn \(\left[ {0;8\pi } \right]\) .

Chọn C