Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Cánh diều Bài 8 trang 46 SBT toán 11 – Cánh diều: Cho dãy...

Bài 8 trang 46 SBT toán 11 – Cánh diều: Cho dãy số u_n biết u_1 = 2 và u_n = √2 + u_n – 1^2 với mọi n ≥ 2

Thay \(n = 2, {\rm{ 3, 4, 5}}\) vào công thức \({u_n} = \sqrt {2 + u_{n – 1}^2} \. Hướng dẫn giải Giải bài 8 trang 46 sách bài tập toán 11 – Cánh diều – Bài 1. Dãy số. Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = 2\) và \({u_n} = \sqrt {2 + u_{n – 1}^2} \…

Đề bài/câu hỏi:

Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = 2\) và \({u_n} = \sqrt {2 + u_{n – 1}^2} \) với mọi \(n \ge 2\). Viết năm số hạng đầu của dãy số và dự đoán công thức của số hạng tổng quát \({u_n}\).

Hướng dẫn:

Thay \(n = 2,{\rm{ 3, 4, 5}}\) vào công thức \({u_n} = \sqrt {2 + u_{n – 1}^2} \) để xác định đủ 5 số hạng đầu của dãy số. Từ 5 số hạng đầu có thể dự đoán công thức của số hạng tổng quát \({u_n}\).

Lời giải:

Ta có:

\({u_1} = 2 = \sqrt 4 = \sqrt {2\left( {1 + 1} \right)} \)

\({u_2} = \sqrt {2 + u_1^2} = \sqrt {2 + {2^2}} = \sqrt 6 = \sqrt {2\left( {2 + 1} \right)} \)

\({u_3} = \sqrt {2 + u_2^2} = \sqrt {2 + 6} = \sqrt 8 = \sqrt {2\left( {3 + 1} \right)} \)

\({u_4} = \sqrt {2 + u_3^2} = \sqrt {2 + 8} = \sqrt {10} = \sqrt {2\left( {4 + 1} \right)} \)

\({u_5} = \sqrt {2 + u_4^2} = \sqrt {2 + 10} = \sqrt {12} = \sqrt {2\left( {5 + 1} \right)} \)

Như vậy 5 số hạng đầu của dãy số là: \(2\), \(\sqrt 6 \), \(2\sqrt 2 \), \(\sqrt {10} \), \(2\sqrt 3 \).

Từ 5 số hạng đầu, ta có thể dự đoán công thức của số hạng tổng quát \({u_n}\) là:

\({u_n} = \sqrt {2\left( {n + 1} \right)} \)