Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Cánh diều Bài 44 trang 83 SBT toán 11 – Cánh diều: Tính các...

Bài 44 trang 83 SBT toán 11 – Cánh diều: Tính các giới hạn sau: a) mathop lim limits_x -> – ∇ 2 + 4/3x/x^2 – 1 b) mathop lim limits_x -> 2^ + 1/x – 2

Sử dụng các tính chất về giới hạn hàm số. Gợi ý giải Giải bài 44 trang 83 sách bài tập toán 11 – Cánh diều – Bài tập cuối Chương 3. Tính các giới hạn sau:…

Đề bài/câu hỏi:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to – \infty } \frac{{2 + \frac{4}{{3x}}}}{{{x^2} – 1}}\)

b) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x – 2}}\)

c) \(\mathop {\lim }\limits_{x \to – {3^ + }} \frac{{ – 5 + x}}{{x + 3}}\)

d) \(\mathop {\lim }\limits_{x \to – \infty } \frac{{14x + 2}}{{ – 7x + 1}}\)

e) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ – 2{x^2}}}{{3x + 5}}\)

g) \(\mathop {\lim }\limits_{x \to – \infty } \frac{{\sqrt {4{x^2} + 1} }}{{x + 2}}\)

h) \(\mathop {\lim }\limits_{x \to 1} \frac{{x – 1}}{{{x^2} – 1}}\)

i) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} – 5x + 6}}{{x – 2}}\)

k) \(\mathop {\lim }\limits_{x \to 3} \frac{{ – {x^2} + 4x – 3}}{{{x^2} + 3x – 18}}\)

Hướng dẫn:

Sử dụng các tính chất về giới hạn hàm số.

Lời giải:

a) Ta có \(\mathop {\lim }\limits_{x \to – \infty } \left( {2 + \frac{4}{{3x}}} \right) = \mathop {\lim }\limits_{x \to – \infty } 2 + \mathop {\lim }\limits_{x \to – \infty } \frac{4}{{3x}} = 2 + 0 = 2\).

Mặt khác, \(\mathop {\lim }\limits_{x \to – \infty } \left( {{x^2} – 1} \right) = \mathop {\lim }\limits_{x \to – \infty } \left[ {{x^2}\left( {1 – \frac{1}{{{x^2}}}} \right)} \right] = \mathop {\lim }\limits_{x \to – \infty } {x^2}.\mathop {\lim }\limits_{x \to – \infty } \left( {1 – \frac{1}{{{x^2}}}} \right) = + \infty \)

Suy ra \(\mathop {\lim }\limits_{x \to – \infty } \frac{{2 + \frac{4}{{3x}}}}{{{x^2} – 1}} = 0\).

b) Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x – 2}} = + \infty \).

c) Ta có \(\mathop {\lim }\limits_{x \to – {3^ + }} \left( { – 5 + x} \right) = \left( { – 5} \right) + \left( { – 3} \right) = – 2 < 0\).

Suy ra \(\mathop {\lim }\limits_{x \to – {3^ + }} \frac{{ – 5 + x}}{{x + 3}} = – \infty \).

d) Ta có:\(\mathop {\lim }\limits_{x \to – \infty } \frac{{14x + 2}}{{ – 7x + 1}} = \mathop {\lim }\limits_{x \to – \infty } \frac{{x\left( {14 + \frac{2}{x}} \right)}}{{x\left( { – 7 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to – \infty } \frac{{14 + \frac{2}{x}}}{{ – 7 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to – \infty } 14 + \mathop {\lim }\limits_{x \to – \infty } \frac{2}{x}}}{{\mathop {\lim }\limits_{x \to – \infty } \left( { – 7} \right) + \mathop {\lim }\limits_{x \to – \infty } \frac{1}{x}}}\)

\( = \frac{{14 + 0}}{{ – 7 + 0}} = – 2\).

e) Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ – 2{x^2}}}{{3x + 5}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ – 2{x^2}}}{{x\left( {3 + \frac{5}{x}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ – 2x}}{{3 + \frac{5}{x}}}\).

Ta thấy \(\mathop {\lim }\limits_{x \to + \infty } \left( { – 2x} \right) = – \infty \) và \(\mathop {\lim }\limits_{x \to + \infty } \left( {3 + \frac{5}{x}} \right) = \mathop {\lim }\limits_{x \to + \infty } 3 + \mathop {\lim }\limits_{x \to + \infty } \frac{5}{x} = 3 + 0 = 3\).

Vậy \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ – 2x}}{{3 + \frac{5}{x}}} = – \infty \).

g) Ta có: \(\mathop {\lim }\limits_{x \to – \infty } \frac{{\sqrt {4{x^2} + 1} }}{{x + 2}} = \mathop {\lim }\limits_{x \to – \infty } \frac{{\sqrt {{x^2}\left( {4 + \frac{1}{{{x^2}}}} \right)} }}{{x\left( {1 + \frac{2}{x}} \right)}} = \mathop {\lim }\limits_{x \to – \infty } \frac{{\left| x \right|\sqrt {4 + \frac{1}{{{x^2}}}} }}{{x\left( {1 + \frac{2}{x}} \right)}}\)

\( = \mathop {\lim }\limits_{x \to – \infty } \frac{{\left( { – x} \right)\sqrt {4 + \frac{1}{{{x^2}}}} }}{{x\left( {1 + \frac{2}{x}} \right)}} = \mathop {\lim }\limits_{x \to – \infty } \frac{{ – \sqrt {4 + \frac{1}{{{x^2}}}} }}{{1 + \frac{2}{x}}}\).

Vì \(\mathop {\lim }\limits_{x \to – \infty } \left( {4 + \frac{1}{{{x^2}}}} \right) = \mathop {\lim }\limits_{x \to – \infty } 4 + \mathop {\lim }\limits_{x \to – \infty } \frac{1}{{{x^2}}} = 4 + 0 = 4\) nên \(\mathop {\lim }\limits_{x \to – \infty } \sqrt {4 + \frac{1}{{{x^2}}}} = \sqrt 4 = 2\).

Mặt khác, \(\mathop {\lim }\limits_{x \to – \infty } \left( {1 + \frac{2}{x}} \right) = \mathop {\lim }\limits_{x \to – \infty } 1 + \mathop {\lim }\limits_{x \to – \infty } \frac{2}{x} = 1 + 0 = 1\).

Như vậy \(\mathop {\lim }\limits_{x \to – \infty } \frac{{\sqrt {4{x^2} + 1} }}{{x + 2}} = \mathop {\lim }\limits_{x \to – \infty } \frac{{ – \sqrt {4 + \frac{1}{{{x^2}}}} }}{{1 + \frac{2}{x}}} = \frac{{ – 2}}{1} = – 2\).

h) Ta có \(\mathop {\lim }\limits_{x \to 1} \frac{{x – 1}}{{{x^2} – 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{x – 1}}{{\left( {x – 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{1}{{x + 1}} = \frac{{\mathop {\lim }\limits_{x \to 1} 1}}{{\mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 1}} = \frac{1}{{1 + 1}} = \frac{1}{2}\).

i) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} – 5x + 6}}{{x – 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x – 2} \right)\left( {x – 3} \right)}}{{x – 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x – 3} \right) = \mathop {\lim }\limits_{x \to 2} x + \mathop {\lim }\limits_{x \to 2} 3 = 2 + 3 = 5\).

k) \(\mathop {\lim }\limits_{x \to 3} \frac{{ – {x^2} + 4x – 3}}{{{x^2} + 3x – 18}} = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {x – 3} \right)\left( {1 – x} \right)}}{{\left( {x – 3} \right)\left( {x + 6} \right)}} = \mathop {\lim }\limits_{x \to 3} \frac{{1 – x}}{{x + 6}} = \frac{{\mathop {\lim }\limits_{x \to 3} 1 – \mathop {\lim }\limits_{x \to 3} x}}{{\mathop {\lim }\limits_{x \to 3} x + \mathop {\lim }\limits_{x \to 3} 6}} = \frac{{1 – 3}}{{3 + 6}} = \frac{{ – 2}}{9}\).